Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{ }x^2+8x+8=k\), điều kiện k>=0
thay vào ta được \(x^2+8x+8+4\)-2\(\sqrt{x^2+8x+8}\)=3 <=>k2+4-2k=3 <=>k2-2k+1=0 <=>k=1(thỏa mãn k>=0)
=>\(\sqrt{x^2+8x+8}\)=1 <=> x2+8x+8=1 <=>x2+8x+7=0 <=> x=-1,x=-7
\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)
\(\Leftrightarrow x^2+8x+7-\left(2\sqrt{x^2+8x+8}-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{x^2+8x+7}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{\left(x+1\right)\left(x+7\right)}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(1-2.\frac{1}{\sqrt{x^2+8x+8}+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\) ( là nghiệm ) . Và ta xét PT \(\frac{2}{\sqrt{x^2+8x+8}+1}=1\)
\(\sqrt{x^2+8x+8}=1\Leftrightarrow x^2+8x+7=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy PT trên là : \(x=-1;x=-7\)
Chúc bạn học tốt !!!
1/ x2-3x+2=0
⇒ (x2-2x)-(x-2)=0
⇒ x(x-2)-(x-2)=0
⇒ (x-1)(x-2)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2) x2-6x+5=0
⇒x2-6x+9-4=0
⇒(x2-6x+9)-22=0
⇒(x-3)2-22=0
⇒(x-3-2)(x-3+2)=0
⇒(x-5)(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3) 2x2+5x+3=0
⇒ (2x2+2x)+(3x+3)=0
⇒ 2x(x+1)+3(x+1)=0
⇒ (x+1)(2x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)
4) x2-8x+15=0
⇒ (x2-8x+16)-1=0
⇒ (x-4)2-12=0
⇒ (x-4-1)(x-4+1)=0
⇒ (x-5)(x-3)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5) x2-x-12=0
⇒ (x2-4x)+(3x-12)=0
⇒ x(x-4)+3(x-4)=0
⇒ (x-4)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
1: Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: Ta có: \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3: Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
4: Ta có: \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5: Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
Ta có:
⇔ 8x - 3 - 6x + 4 = 4x - 2 + x + 3
⇔ 2x + 1 = 5x + 1
⇔ 2x - 5x = 1 - 1
⇔ -3x = 0 ⇔ x = 0
Vậy phương trình đã cho có nghiệm là x = 0.
a, Ta có :
x4+8x2-9=0
x4+9x2-x2-9=0
x4-x2+9x2-9=0
x2(x2-1)+9(x2-10=0
(x2-1)(x2+9)=0
\(\Rightarrow x^2-1=0\Rightarrow x=1\)
\(\Rightarrow x^2+9=0\Rightarrow x=-3\)
b, k bt lm
\(\left(x^2-6x+5\right)\left(x^2-8x+12\right)=252\)
\(\Leftrightarrow x^4-14x^3+65x^2-112x-192=0\)
\(\Leftrightarrow\left(x^2-7x+24\right)\left(x-8\right)\left(x+1\right)=0\)
TH1 : \(x-8=0\Leftrightarrow x=8\)
TH2 : \(x+1=0\Leftrightarrow x=-1\)
TH3 : \(x^2-7x+24=0\)
\(\left(-7\right)^2-4.24=49-96< 0\)vô nghiệm
x - 8x + 12 = 0
- 7x + 12 = 0
- 7x = 0 - 12
- 7x = -12
x = - 12 : -7
x = \(\frac{12}{7}\)
Vậy x = \(\frac{12}{7}\)
\(x^2-8x+12=0\)
\(< =>x^2-2x-6x+12=0\)
\(< =>x\left(x-2\right)-6\left(x-2\right)=0\)
\(< =>\left(x-6\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x=6\\x=2\end{cases}}\)