\(x^2-7x+8\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

\(x^2-7x+8=0\)

\(\Leftrightarrow\)\(x^2-2.\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}=0\)

\(\Leftrightarrow\)\(\left(x-\frac{7}{2}\right)^2-\frac{17}{4}=0\)

\(\Leftrightarrow\)\(\left(x-\frac{7}{2}-\frac{\sqrt{17}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{17}}{2}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{7}{2}-\frac{\sqrt{17}}{2}=0\\x-\frac{7}{2}+\frac{\sqrt{17}}{2}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{cases}}\)

Vậy....

27 tháng 6 2019

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+5\right)=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+5=5\\x^2+5x+5=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2=-\frac{15}{4}\left(VL\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) ( TM )

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

ĐKXĐ: \(x\geq \frac{6}{5}\)

PT \(\Leftrightarrow 2(x+1)\sqrt{5x-6}=(x+1)^2+5x-6-1\)

\(\Leftrightarrow (x+1)^2+(5x-6)-2(x+1)\sqrt{5x-6}-1=0\)

\(\Leftrightarrow (x+1-\sqrt{5x-6})^2-1=0\)

\(\Leftrightarrow (x+2-\sqrt{5x-6})(x-\sqrt{5x-6})=0\)

\(\Rightarrow \left[\begin{matrix} x+2=\sqrt{5x-6}\\ x=\sqrt{5x-6}\end{matrix}\right.\)

Nếu \(x+2=\sqrt{5x-6}\Rightarrow \left\{\begin{matrix} x\geq -2\\ (x+2)^2=5x-6\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2-x+10=0\end{matrix}\right.\) (dễ thấy vô nghiệm)

Nếu \(x=\sqrt{5x-6}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=5x-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x^2-5x+6=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-2)(x-3)=0\end{matrix}\right.\Rightarrow x=2; x=3\) là nghiệm của PT

Vậy.......

27 tháng 7 2019

Cách khác nhưng ko hay!

ĐK \(x\ge\frac{6}{5}\)

Bớt 12x - 12 ở các hai vế, pt tương đương với:

\(2\left(x+1\right)\sqrt{5x-6}-12\left(x-1\right)=x^2-5x+6\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=2\left[\left(x+1\right)\sqrt{5x-6}-6\left(x-1\right)\right]\)

Nhân liên hợp ở vế phải: \(\Leftrightarrow\left(x-3\right)\left(x-2\right)-\frac{2\left(x-3\right)\left(x-2\right)\left(5x-7\right)}{\left(x+1\right)\sqrt{5x-6}+6\left(x-1\right)}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left[1-\frac{1}{\left(x+1\right)\sqrt{5x-6}+6\left(x-1\right)}\right]\) = 0

Xét cái ngoặc to: \(1-\frac{1}{\left(x+1\right)\sqrt{5x-6}+6\left(x-1\right)}>1-\frac{1}{6\left(\frac{6}{5}-1\right)}=1-\frac{5}{6}=\frac{1}{6}>0\)

Nên cái ngoặc to vô nghiệm. Giải 2 cái ngoặc to x = 3; x = 2 (TM)

28 tháng 6 2019

\(PT\Leftrightarrow\left(x^4-x^3\right)-\left(6x^3-6x^2\right)+\left(12x^2-12x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow x^3\left(x-1\right)-6x^2\left(x-1\right)+12x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(3x-9\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3x\left(x-3\right)+3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) (do \(x^2-3x+3>0\forall x\))

Vậy..

30 tháng 6 2019

Xét thấy x = 0 không thỏa mãn pt

Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)

\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)

\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)

\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)

Đặt \(x+\frac{1}{x}=a\)

\(pt\Leftrightarrow6a^2-7a-48=0\)

\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)

\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)

\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)

\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)

\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)

\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)

Giải nốt nha bạn. Nghiệm hơi xấu

30 tháng 6 2019

:v làm kiểu này chắc chết, quy đồng ra pt bậc 2 nội nhìn cái hệ số c là thấy hết muốn làm r

NV
27 tháng 6 2019

Viết đủ đề bài ra đi bạn, đề bài toàn thiếu vế phải

27 tháng 6 2019

= 4x2 nữa nhé. Mình quên , hihi

13 tháng 5 2017

a)\(\left(x-2\right)\left(5-x\right)=7x-\left(x-1\right)\left(3-2x\right)\Leftrightarrow5x-x^2-10+2x=7x-3x+2x^2+3-2x\Leftrightarrow-3x^2+5x-13=0\)\(\Delta=b^2-4ac=25-4.\left(-3\right).\left(-13\right)=-131< 0\)

\(\Rightarrow\)phương trình vô nghiệm

NV
28 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(6\left(a^2-2\right)+7a-36=0\)

\(\Leftrightarrow6a^2+7a-48=0\)

Nghiệm xấu

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Bạn xem lại xem có viết nhầm đề bài không thế?