Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7x+6\sqrt{x+5}=x^2+30\left(đk:x\ge-5\right)\)
\(\Leftrightarrow6\sqrt{x+5}=x^2-7x+30\)
Ta thấy 2 vế đều dương nên bình phương lên ta được:
\(36x+180=x^4+49x^2+900-14x^3+60x^2-420x\)
\(\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)
\(\Leftrightarrow x^3\left(x-4\right)-10x^2\left(x-4\right)+69x\left(x-4\right)-180\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-4\right)-6x\left(x-4\right)+45\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)
\(\Leftrightarrow x=4\left(tm\right)\) (do \(x^2-6x+45=\left(x^2-6x+9\right)+36=\left(x-3\right)^2+36\ge36>0\))
b) ĐKXĐ: \(x\ge-5\) PT \(\Leftrightarrow x^2-7x+30=6\sqrt{x+5}\). Vì vế trái lớn hơn 0 (bạn tự chứng minh) nên bình phương 2 vế ta có;
\(x^4+49x^2+900-14x^3+60x^2-420x=36x+180\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)
Vì x2-6x+45 = (x-3)2+36 >0 nên (x-4)2=0 <=> x=4 (T/m). Vậy phương trình có nghiệm duy nhất x=4
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1)
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ]
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ]
Đặt a = ( x + 1 ) ( x + 4 )
(1) <=> a = 5 căn ( a + 24 )
<=> a^2 = 25 ( a + 24 )
<=> a^2 - 25a - 600 = 0
<=> a1 = 40
a2 = -15
với a = 40 ta có:
( x + 1 ) ( x + 4 ) = 40
<=> x^2 + 5x + 4 = 40
<=> x^2 + 5x - 36 = 0
<=> x = 4 và x = - 9
với a = -15, ta có:
( x + 1 ) ( x + 4 ) = -15
<=> x^2 + 5x + 4 = -15
<=> x^2 + 5x + 19 = 0
delta < 0 => pt vô nghiệm
Vậy s = { -9; 4}
Điều kiện: 3x2 - 6x - 6 \(\ge\) 0 và 2 - x \(\ge\) 0
pt <=> \(\sqrt{3x^2-6x-6}=3.\left(2-x\right)^2\sqrt{2-x}+\left(7x-19\right)\sqrt{2-x}\)
<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-12x+12+7x-19\right)\sqrt{2-x}\)
<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-5x-7\right)\sqrt{2-x}\) (1)
Đặt \(\sqrt{3x^2-6x-6}=a;\sqrt{2-x}=b;\left(a;b\ge0\right)\)
=> \(3x^2-6x-6=a^2;2-x=b^2\)=> \(a^2-b^2=3x^2-5x-8\)
=> (1) trở thành: a = (a2 - b2 + 1).b
<=> a = (a- b)(a+b).b + b
<=> (a - b) - (a- b)(a+b).b = 0
<=> (a - b).(1 - b(a+b)) = 0
<=> a = b hoặc (a+b).b = 1
+) a = b => ......
+) (a+b).b = 1 <=> ab + b2 - 1 = 0
<=> \(\sqrt{3x^2-3x-6}.\sqrt{2-x}+\left(2-x\right)-1=0\)
<=> \(\sqrt{3\left(x^2-x-2\right)\left(2-x\right)}=x-1\)
<=> x \(\ge\) 1; 3(x2 - x - 2)(2 - x) = (x-1)2
<=> ........
\(ĐKXĐ:x\ge-5\)
Ta có : \(x^2-7x=6\sqrt{x+5}-30\)
\(\Leftrightarrow x^2-7x+30-6\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x+5-6\sqrt{x+5}+9\right)=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(\sqrt{x+5}-3\right)^2=0\end{cases}\Leftrightarrow}x=4\) ( Thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm duy nhất \(x=4\)
cho mình hỏi dương 9 ở dòng 5 sao có v ạ