Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\sqrt{2}\right)+3x^2-6=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left[1+3\left(x+\sqrt{2}\right)\right]\)
\(\Rightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\1+3\left(x+\sqrt{2}\right)=0\end{cases}}\)
đến đây bạn tự làm nhé!
mình chỉ biết có một giá trị của \(x=\sqrt{2}\)thôi!
a) \(-7x^2+10x-2016=-7\left(x^2-\frac{10x}{7}\right)-2016=-7\left(x^2-2.x.\frac{5}{7}+\frac{25}{49}\right)+\frac{25}{49}.7-2016=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)Vậy Max = \(-\frac{14087}{7}\Leftrightarrow x=\frac{5}{7}\)
b) \(\frac{x+5}{11}+\frac{x+2010}{6}\ge\frac{x-1}{2017}+\frac{x+6}{2010}\)
\(\Leftrightarrow\frac{x}{2011}+\frac{x}{6}+\frac{5}{2011}+335\ge\frac{x}{2017}+\frac{x}{2010}-\frac{1}{2017}+\frac{1}{335}\)
\(\Leftrightarrow x\left(\frac{1}{2011}+\frac{1}{6}-\frac{1}{2017}-\frac{1}{2010}\right)\ge\frac{1}{335}-\frac{1}{2017}-\frac{5}{2011}-335\)
\(\Leftrightarrow\frac{677389259}{4076467935}x\ge\frac{-455205582048}{1358822645}\) \(\Leftrightarrow x\ge-2016\)
Câu b) còn cách khác nữa bạn nhé. Mình làm cách này "xù" quá ^^
6)x4 - x3- 10x2+2x+4=0
<=>x4 - x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)
=>(x2-3x-2)(x2+2x-2)=0
Th1:x2-3x-2=0
denta(-3)2-(-4(1.2))=17
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)
Th2:x2+2x-2=0
denta:22-(-4(1.2))=12
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)
=>x=-căn bậc hai(3)-1,
x=3/2-căn bậc hai(17)/2,
x=căn bậc hai(3)-1,
x=căn bậc hai(17)/2+3/2
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
đặt \(\sqrt{3x^2+x+2}=a\)
\(a^2+4x^2+x^2-4x+4\)=4ax <=> \(\left(a^2-4ax+4x^2\right)+\left(x^2-4x+4\right)\)=0 <=>(a-2x)2+(x-2)2=0
=>a=2x và x=2 đồng thởi xảy ra (1)
với x=2 =>a=\(\sqrt{3.4+2+2}\)=4=2x
vậy x=2 thỏa mãn điều kiện (1) =>pt co nghiệm duy nhất x=2
Bài làm:
Ta có: \(x^2-22x+127=\left(x^2+22x+121\right)+6=\left(x+11\right)^2\ge6\left(\forall x\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(\sqrt{x-2}+\sqrt{20-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{20-x}\right)^2\right]\)
\(=2\left(x-2+20-x\right)=2.18=36\)
\(\Rightarrow\sqrt{x-2}+\sqrt{20-x}\le\sqrt{36}=6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-11\right)^2\\x-2=20-x\end{cases}}\Rightarrow x=11\)