K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

x=3

24 tháng 12 2017

Bạn cs thể giải rõ hơn đc ko

21 tháng 12 2018

\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)

\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)

=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)

=>x=3 tmdk

21 tháng 12 2018

sorry mk vt nham

29 tháng 5 2015

a) a = 3; b = - 5 ; c = 2 => a + b + c = 0

=> PT có  nghiệm là x = 1 ; và x = c/a = 2/3

b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất

=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)

Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )

 

3 tháng 2 2016

Ta có: a=3; b= -5; c= 2

Δ=b^2 - 4ac = -5^2 - 4.3.2

                     = 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt

 \(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)

\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1

 

13 tháng 1 2017

\(x^2-5x-3\sqrt{3x}+12=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\\sqrt{x}-\sqrt{3}=0\end{cases}}\Leftrightarrow x=3\)

Vậy...

17 tháng 10 2021

Đk: \(x\ne5;x\ne-10\)

Pt: \(\Rightarrow\dfrac{\left(x-2\right)\left(x+5\right)}{x^2}-\dfrac{40}{\left(x-5\right)\left(x+10\right)}=0\)

     \(\Rightarrow\left(x-2\right)\left(x+5\right)\left(x-5\right)\left(x+10\right)-40x^2=0\)

     \(\Rightarrow\left(x^2-12x+20\right)\left(x^2-25\right)-40x^2=0\)

     \(\Rightarrow x^4-12x^3-45x^2+300x=500\)

     \(\Rightarrow\left\{{}\begin{matrix}x=5\left(loại\right)\\x=-5\left(tm\right)\end{matrix}\right.\)

5 tháng 2 2023

\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

Mấy câu còn lại mình giải rồi 

5 tháng 2 2023

Ok cảm ơn bạn =)

NV
19 tháng 7 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{5x-1}=\sqrt{3x-2}+\sqrt{x-1}\)

\(\Leftrightarrow5x-1=3x-2+x-1+2\sqrt{\left(3x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow x+2=2\sqrt{\left(3x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4=4\left(3x-2\right)\left(x-1\right)\)

\(\Leftrightarrow11x^2-24x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{11}\left(loại\right)\\x=2\end{matrix}\right.\)

a: Ta có: \(x^2+3x+4=0\)

\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)

Do đó: Phương trình vô nghiệm