Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)
\(2D\ge10\) => D>=5 khi x=2y=6
\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)
F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6
\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)
\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)
E>=1998 khi 2x=y=2
bài 4;
\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
khi x=1/6
bài 5:
\(a,\left(x+2\right)^2=0=>x=-2\)
\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)
c,\(x^2+2y^2-2xy-2x+2=0\)
\(x^2-4xy+4y^2+x^2-4x+4=0\)
\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)
đây nhá bạn, khá tốn time của mình
\(a)\)
\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)
\(\Leftrightarrow x-x^2+1=3x+1\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b)\)
\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)
\(\Leftrightarrow x^2+2x+1=x^2+10\)
\(\Leftrightarrow2x-9=0\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{2}{9}\)
a: =>(x-1)(x-2)=0
=>x=1 hoặc x=2
b: TH1: x>=0
=>2x=3x+2
=>x=-2(loại)
TH2: x<0
=>-2x=3x+2
=>-5x=2
=>x=-2/5(nhận)
c: TH1: x>=0
=>2x=3x+4
=>-x=4
=>x=-4(loại)
TH2: x<0
=>-2x=3x+4
=>-5x=4
=>x=-4/5(nhận)
a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)
\(=x^4-y^4\)
Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:
\(A=2^4-\left(-\frac{1}{2}\right)^4\)
\(=16-\frac{1}{16}\)
\(=\frac{255}{16}\)
Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)
b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\)
Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:
\(B=3^5-\left(-2\right)^5\)
\(=243-\left(-32\right)\)
\(=243+32=275\)
Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2
c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)
\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)
\(=x^4-2x^3y+2y^4+2x^3\)
Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:
\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)
\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)
\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)
\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)
Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)
Lời giải
Khử trị tuyệt đối
\(\left|\left(y-x-1\right)^2+x-2\right|+4=2x-\left|\left(x-1\right)\left(x-2\right)\right|\)
VT >= 4 =>để có nghiệm VP >=4
=> x>=2
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)\ge0\\\left(y-x-1\right)^2+\left(x-2\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\left(y-x-1\right)^2+x\right|=\left(y-x-1\right)^2+\left(x-2\right)\\\left|\left(x-1\right)\left(x-2\right)\right|=\left(x-1\right)\left(x-2\right)\end{matrix}\right.\)
Phương trình tương đương hệ
\(\left\{{}\begin{matrix}x\ge2\left(1\right)\\\left(x-y+1\right)^2+\left(x-2\right)+4=2x-\left(x-1\right)\left(x-2\right)\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x-y+1\right)^2=\left(x-2\right)-\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-y+1\right)^2=\left(x-2\right)\left[1-\left(x-1\right)\right]=-\left(x-2\right)^2\)
\(\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)=0\\x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Kết luận
(x,y) =(2,3) là nghiệm duy nhất