K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1

\(x^2+2=6\)

\(x^2=6-2\)

\(x^2=4\)

\(x=-2\) hoặc \(x=2\)

Vậy \(S=\left\{-2;2\right\}\)

16 tháng 1

\(x^2\) + 2 = 6

\(x^2\) = 6 - 2

\(x^2\) = 4

\(x^2\) = 4 nên x = 2 hoặc -2

Vậy x={2;-2}.



5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

28 tháng 5 2021

\(x\left(x^2+13x-6\right)=\left(x^2+8x-6\right)\sqrt{x^2+6x}\)

=> \(\left[x\left(x^2+13x+6\right)\right]^2=\left[\left(x^2+8x-6\right)\sqrt{x^2+6x}\right]^2\)

=> \(x^2\left(x^2+13x+6\right)^2=\left(x^2+8x-6\right)^2\left(x^2+6x\right)\)

<=> \(x^2\left(x^2+13x+6\right)-x\left(x+6\right)\left(x^2+8x-6\right)^2=0\)

<=> \(x\left(x^3+13x^2+6x-x^3-8x^2+6x-6x^2-48x+36\right)=0\)

<=> \(x\left(-x^2-36x+36\right)=0\)

28 tháng 5 2021

từ dòng ba xuống dòng bốn bạn ghi thiếu bình phương rùi 

29 tháng 10 2020

\(pt\Leftrightarrow36+x^4-12x^2-6+x=0\)

\(\Leftrightarrow x^4-12x^2+x+30=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-8x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-8x-15\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)-x\left(x+3\right)-5\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2-x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-3\left(l\right)\end{cases}}\)

Phần \(x^2-x-5=0\)sử dụng công thức delta

\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{21}}{2}\left(l\right)\\x=\frac{1-\sqrt{21}}{2}\left(tm\right)\end{cases}}\)

Kết luận .....

29 tháng 10 2017

Giải phương trình:x2+6=x2x21

28 tháng 6 2017

đề sai à, sửa lại rồi áp dụng C-S: cho VT=<4, biến đổi VP>=4 xảy ra khi VT=VP=4 

1 tháng 8 2019

Câu hỏi của Hiền Nguyễn Thị