\(x+1+\sqrt{2x+3}=\dfrac{8x^2+18x+11}{2\sqrt{2x+3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2019

ĐKXĐ: \(x>-\dfrac{3}{2}\)

\(\Leftrightarrow x+1=\dfrac{8x^2+18x+11}{2\sqrt{2x+3}}-\sqrt{2x+3}\)

\(\Leftrightarrow x+1=\dfrac{8x^2+14x+5}{2\sqrt{2x+3}}=\dfrac{\left(2x+1\right)\left(4x+5\right)}{2\sqrt{2x+3}}\)

\(\Leftrightarrow\left(2x+2\right)\sqrt{2x+3}=\left(2x+1\right)\left(4x+5\right)\)

Đặt \(\sqrt{2x+3}=a>0\Rightarrow\left(a^2-1\right)a=\left(a^2-2\right)\left(2a^2-1\right)\)

\(\Leftrightarrow2a^4-a^3-5a^2+a+2=0\)

\(\Leftrightarrow\left(a^2-a-1\right)\left(2a^2+a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{1+\sqrt{5}}{2}\\a=\dfrac{1-\sqrt{5}}{2}\left(l\right)\\a=\dfrac{-1+\sqrt{17}}{4}\\a=\dfrac{-1-\sqrt{17}}{4}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x+3}=\dfrac{1+\sqrt{5}}{2}\\\sqrt{2x+3}=\dfrac{-1+\sqrt{17}}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{5}}{4}\\x=\dfrac{-15-\sqrt{17}}{16}\end{matrix}\right.\)

16 tháng 2 2019

ĐKXĐ: \(x>-\frac{3}{2}\)

\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)

Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)

\(\Rightarrow8x^2+18x+11=a^2+b^2\)

Khi đó, phương trình (1) trở thành:

\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)

\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)

Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!

HỌC TỐT!^_^

8 tháng 1 2020
https://i.imgur.com/nb5inR8.png
Y
22 tháng 5 2019

ĐKXĐ : \(x>-\frac{3}{2}\)

pt \(\Leftrightarrow2\left(x+1\right)\left(2x+3\right)=8x^2+18x+11\)

\(\Leftrightarrow2x^2+10x+6=8x^2+18x+11\)

\(\Leftrightarrow6x^2+8x+5=0\)

\(\Leftrightarrow6\left(x^2+\frac{4}{3}x+\frac{5}{6}\right)=0\)

\(\Leftrightarrow6\left(x+\frac{2}{3}\right)^2+\frac{7}{3}=0\) ( ***** )

Vậy pt vô nghiệm

8 tháng 9 2017

bạn làm đc câu b này chưa giải giúp mk với

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

3 tháng 5 2019

ĐKXĐ\(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)

Đặt \(\sqrt{2x^2-3x+1}=a\left(a\ge0\right)\)

\(\Rightarrow4a^2+4x-1=8x^2-8x+3\)

Thay vào đề bài được

\(4a^2+4x-1=8ax\)

\(\Leftrightarrow4a^2-8ax+4x-1=0\)

CÓ \(\Delta'=16x^2-16x+4=\left(4x-2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{4x-4x+2}{4}=\frac{1}{2}\\a=\frac{4x+4x-2}{4}=\frac{4x-1}{2}\end{cases}}\)

Làm nốt

20 tháng 9 2019

ĐKXĐ\(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)

Đặt \sqrt{2x^2-3x+1}=a\left(a\ge0\right)2x2−3x+1​=a(a≥0)

\Rightarrow4a^2+4x-1=8x^2-8x+3⇒4a2+4x−1=8x2−8x+3

Thay vào đề bài được

4a^2+4x-1=8ax4a2+4x−1=8ax

\Leftrightarrow4a^2-8ax+4x-1=0⇔4a2−8ax+4x−1=0

CÓ \Delta&#x27;=16x^2-16x+4=\left(4x-2\right)^2Δ′=16x2−16x+4=(4x−2)2

\(\Rightarrow\orbr{\begin{cases}a=\frac{4x-4x+2}{4}=\frac{1}{2}\\a=\frac{4x+4x-2}{4}=\frac{4x-1}{2}\end{cases}}\)

29 tháng 11 2017

đáp án là bằng nhau

2 tháng 12 2017

ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)