Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+4\right)^4+\left(x+6\right)^4=82\)
Đặt a = x + 5
Ta có:
\(\left(x+4\right)^4+\left(x+6\right)^4=82\)
\(\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4\)
\(\Leftrightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=82\)
\(\Leftrightarrow\left(a^2-2a+1\right)^2+\left(a+2a+1\right)^2=82\)
\(\Leftrightarrow\left(a^2+1\right)^2-4a\left(a^2+1\right)+4a^2+\left(a^2+1\right)^2+4a\left(a^2+a\right)+4a^2=82\) \(\Leftrightarrow\left(a^2+1\right)^2+4a^2=41\)
\(\Leftrightarrow a^4+6a^2+1=41\)
\(\Leftrightarrow a^4+6a^2-40a=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2=-10\left(loại\right)\\a^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-7\end{matrix}\right.\)
a/ Đặt \(x-3=t\)
\(\left(t+1\right)^4+\left(t-1\right)^4-82=0\)
\(\Leftrightarrow2t^4+12t^2-80=0\)
\(\Leftrightarrow t^4+6t^2-40=0\Rightarrow\left[{}\begin{matrix}t^2=4\\t^2=-10\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)-43=0\)
Đặt \(x^2-4x=t\)
\(t^2+2\left(t+4\right)-43=0\)
\(\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4x-5=0\\x^2-4x+7=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
ĐK: \(\hept{\begin{cases}x^3+2x+4\ge0\\x^3-2x+4\ge0\end{cases}}\)
Đặt: \(\hept{\begin{cases}a=\sqrt{x^3+2x+4}\left(a\ge0\right)\\b=\sqrt{x^3-2x+4}\left(b\ge0\right)\end{cases}\Rightarrow\hept{\begin{cases}a^2=x^3+2x+4\\b^2=x^3-2x+4\end{cases}}\Rightarrow a^2-b^2=4x\Rightarrow x=\frac{a^2-b^2}{4}}\)
\(pt\Leftrightarrow\left[1+\left(\frac{a^2-b^2}{4}\right)\right]a+\left[1-\left(\frac{a^2-b^2}{4}\right)\right]b=4\)
\(\Leftrightarrow\left(4+a^2-b^2\right)a+\left(4-a^2+b^2\right)b=16\)
\(\Leftrightarrow a^3+b^3-ab^2-a^2b+4\left(a+b\right)=16\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)+4\left(a+b\right)=16\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)+4\left(a+b\right)=16\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=16\) (1)
Từ pt, ta có: \(\left(1+x\right)a-\left(1-x\right)b=4\)
\(\Leftrightarrow a+b+\left(a-b\right)x=4\) (2)
Thay (1) và (2) vào, ta có:
\(\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=4\left[a+b+\left(a-b\right)x\right]\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=4\left(a-b\right)x\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a+b\right)\left(a-b\right)-4x\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2-4x\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a^2-b^2=4x\end{cases}}\)
Với \(a=b\) , ta có: \(\sqrt{x^3+2x+4}=\sqrt{x^3-2x+4}\Leftrightarrow x=0\left(TM\right)\)
Với \(a^2-b^2=4x\) , ta có: \(x^3+2x+4-\left(x^3-2x+4\right)=4x\)
\(\Leftrightarrow4x=0\)
\(\Rightarrow x=0\)
Vậy:.........
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
a) 2x-(3x-5x)=4(x+3)
2x - 3x + 5x = 4x +12
4x = 4x + 12
0x= 12 => ko có giá trị nào của x thỏa mãn( cái kết luận này mik ko bik đúng hay sai)
b) 5(x-3)-4=2(x-1)+7
5x-15 - 4 = 2x-2 + 7
5x-19 = 2x+5
5x-2x = 5+19
3x = 24
x= 8
c) 4(x+3)=-7X+17
4x +12 = -7x + 17
4x+7x = 17-12
11x = 5
x = 5/11
1) 2x - (3x -5x) = 4(x+3)
\(\Leftrightarrow\)2x +2x = 4x +12
\(\Leftrightarrow\)4x = 4x +12
\(\Leftrightarrow\)0x = 12
Vậy phương trình đã cho vô nghiệm
2) 5(x-3) - 4 = 2(x-1) +7
\(\Leftrightarrow\)5x - 15 - 4 = 2x - 2 +7
\(\Leftrightarrow\) 5x - 1 = 2x +5
\(\Leftrightarrow\) 5x - 2x = 5 +1
\(\Leftrightarrow\) 3x = 6
\(\Leftrightarrow\) x = 2
Vậy tập nghiệm của phương trình là S= {2}
3) 4(x + 3) = -7x + 17
\(\Leftrightarrow\)4x + 12 = -7x +17
\(\Leftrightarrow\)4x + 7x = 17 - 12
\(\Leftrightarrow\) 11x = 5
\(\Leftrightarrow\) x = \(\frac{5}{11}\)
Vậy tập nghiệm của phương trình là S={ \(\frac{5}{11}\)}
a) x + 3 = 0
\(\Leftrightarrow x=-3\)
Vậy phương trình có tập nghiệm \(S=\left\{-3\right\}\)
b) 2x - 1 = 0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
c) x - 1 = 5x - 3
\(\Leftrightarrow x-5x=-3+1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
Nếu x lớn hơn hoặc bằng 2, có:
|x - 2|(x - 1)(x + 1)(x + 2) = 4
(x - 2)(x + 2)(x - 1)(x + 1) = 4
(x2 - 4)(x2 - 1) = 4
x4 - 4x2 + 4 = 4
(x2 - 2)2 = 4 => x2 - 2 = 2 => x2 = 4 => x = 2
Nếu x nhỏ hơn 2, có:
|x - 2|(x - 1)(x + 1)(x + 2) = 4
(2 - x)(2 + x)(x - 1)(x + 1) = 4
(4 - x2)(x2 - 1) = 4
5x2 - x4 - 4 = 4
x2 - (x4 - 4x2 + 4) = 4
x2 - 4 - (x2 - 2)2 = 0
(x - 2)(x + 2) - (x2 - 2)2 = 0
Câu đầu sai rồi, phải là nếu x lớn hơn 2 thôi vì nếu x=2 thì kết quả của vế trái sẽ bằng 0.
Mà 0≠4=>Vô lí=>x≠2.
Đặt \(x-1=a\) phương trình trở thành:
\(\left(a+2\right)^4+\left(a-2\right)^4=82\)
\(\Leftrightarrow a^4+8a^3+24a^2+32a+16+a^4-8a^3+24a^2-32a+16=82\)
\(\Leftrightarrow2a^4+48a^2+32=82\)
\(\Leftrightarrow a^4+24a^2-25=0\Rightarrow\left[{}\begin{matrix}a^2=1\\a^2=-25\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)