K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

\(x^2-4x=x-2\) \(\Leftrightarrow x^2-5x+2=0\)\(\Leftrightarrow4x^2-20x+8=0\)\(\Leftrightarrow\left[\left(2x\right)^2-2.2x.5+25\right]-17=0\)\(\Leftrightarrow\left(2x-5\right)^2-\left(\sqrt{17}\right)^2=0\)\(\Leftrightarrow\left(2x-5+\sqrt{17}\right)\left(2x-5-\sqrt{17}\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{17}}{2}\\x=\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)

Vậy tập nghiệm của pt đã cho là \(S=\left\{\dfrac{5\pm\sqrt{17}}{2}\right\}\)

15 tháng 9 2019

\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\):

\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)

PT \(\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}+1=0\)

         \(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{x+1}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)

\(\Leftrightarrow x=1;x=2;x=-\frac{2}{3}\)

Cả 3 giá trị trên đều thỏa mãn ĐKXĐ

Vậy PT đã cho có tập nghiêm : \(S=\left\{1;2;-\frac{2}{3}\right\}\)

Chúc bạn học tốt !!!

13 tháng 4 2020

(x-2x+1)-4=0

= (x-1)2-4=0

=> (x-1)2=4

=> x=3

20 tháng 4 2022

b. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
-Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 10 2019

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(ĐK:x\ge5\)

BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)

\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)

\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)

\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)

\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)

Chúc bạn học tốt !!!

28 tháng 9 2019

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

ĐKXĐ: \(x\ge5\)

Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)

\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)

\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)

\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)

Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow x^2-7x+10< 16\)

\(\Leftrightarrow x^2-7x-6< 0\)

Chúc bạn học tốt !!!

28 tháng 9 2019

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)

\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)

\(\Rightarrow x^2-7x+10=16\)

\(\Rightarrow x^2-2x-5x+10=16\)

\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)

...........................

16 tháng 3 2023

\(\dfrac{x+3}{x+2}+\dfrac{x}{2-x}=\dfrac{5x}{x^2-4}\)

\(\Leftrightarrow\dfrac{x+3}{x+2}-\dfrac{x}{x-2}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+2\ne0\\x-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

Ta có : \(\dfrac{x+3}{x+2}-\dfrac{x}{x-2}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)

`=> x^2 -2x +3x-6 - x^2 -2x -5x=0`

`<=>-6x -6=0`

`<=>-6x=6`

`<=>x=-1(t/m)`

=>(x+3)(x-2)-x(x+2)=5x

=>x^2+x-6-x^2-2x=5x

=>5x=-x-6

=>6x=-6

=>x=-1