K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

|x-8|+|x+8|= x^2 - 16 

= ( x-8)+ ( x+ 8) = x^2 - 16 

=> 2x = x^2 - 16 

=> đến đây bn tự giải nhé

11 tháng 2 2020

bổ sung:tìm điều kiện xác định của phương trình

11 tháng 2 2020

ĐKXĐ : x khác cộng trừ 2

7 tháng 9 2019

⇔ [( x + 2 )( x+12 )][( x + 3 )(x + 8)] = 4x²

⇔ ( x\(^2\) + 2x + 12x + 24 ) ( x\(^2\) + 3x + 8x + 24 ) = 4x²

Đặt x\(^2\) + 24 là a tacó :

pt⇔( a + 14x )( a + 11x ) = 4x\(^2\)

⇔ a\(^2\) + 11ax + 14ax + 154x\(^2\) - 4x\(^2\) = 0

⇔ a\(^2\) + 25ax + 150x\(^2\) = 0

⇔ a\(^2\) + 15ax + 10ax + 150x\(^2\) = 0

⇔ a( a + 15x ) + 10x ( a + 15x ) = 0

⇔ ( a + 10x ) ( a + 15x ) = 0

Thay a bằng x\(^2\) + 24

pt⇔ ( x\(^2\) + 24 + 10x ) ( x\(^2\) + 24 + 15x ) = 0

⇔ ( x\(^2\) + 4x + 6x + 24 ) ( x\(^2\) + 15x + 24 ) = 0

⇔ [ x( x + 4 ) + 6 (x + 4 )] ( np in dam) = 0

⇔ [ ( x + 6 ) ( x + 4 ) ] ( cnt ) = 0

\(\left[{}\begin{matrix}x+6=0\\x+4=0\\x^2+15x+24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-4\\x\approx-1,82\\x\approx-13,18\end{matrix}\right.\)

NV
27 tháng 6 2019

Viết đủ đề bài ra đi bạn, đề bài toàn thiếu vế phải

27 tháng 6 2019

= 4x2 nữa nhé. Mình quên , hihi

15 tháng 8 2019

DK:....

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

Dat \(\sqrt{1+x}+\sqrt{8-x}=p\)

\(\Leftrightarrow p^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow\frac{p^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)

Ta co bien doi :

\(pt\Leftrightarrow p+\frac{p^2-9}{2}=3\)

\(\Leftrightarrow\frac{p^2+2p-9}{2}=3\)

\(\Leftrightarrow p^2+2p-15=0\)

\(\Leftrightarrow\left(p+5\right)\left(p-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}p=-5\\p=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}+\sqrt{8-x}=-5\left(loai\right)\\\sqrt{1+x}+\sqrt{8-x}=3\left(chon\right)\end{matrix}\right.\)

\(\Leftrightarrow1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)( thoa )

Vay...

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

PT \(\Leftrightarrow [(x-5)(x-8)][(x-4)(x-10)]=72x^2\)

\(\Leftrightarrow (x^2-13x+40)(x^2-14x+40)=72x^2\)

Đặt \(x^2-13x+40=a\) thì pt trở thành:

\(a(a-x)=72x^2\)

\(\Leftrightarrow a^2-ax-72x^2=0\)

\(\Leftrightarrow a^2-9ax+8ax-72x^2=0\)

\(\Leftrightarrow a(a-9x)+8x(a-9x)=0\)

\(\Leftrightarrow (a-9x)(a+8x)=0\)

Nếu $a-9x=0$

\(\Leftrightarrow x^2-13x+40-9x=0\)

\(\Leftrightarrow x^2-22x+40=0\)

\(\Leftrightarrow (x-2)(x-20)=0\Rightarrow \left[\begin{matrix} x=2\\ x=20\end{matrix}\right.\)

Nếu $a+8x=0$

\(\Leftrightarrow x^2-13x+40+8x=0\)

\(\Leftrightarrow x^2-5x+40=0\Leftrightarrow (x-\frac{5}{2})^2=-\frac{135}{4}\) (vô lý)

Vậy........

10 tháng 4 2018

\(\dfrac{x+2}{89}+\dfrac{x+5}{86}>\dfrac{x+8}{83}+\dfrac{x+11}{80}\)

\(\Leftrightarrow\dfrac{x+2}{89}+1+\dfrac{x+5}{86}+1>\dfrac{x+8}{83}+1+\dfrac{x+11}{80}+1\)

\(\Leftrightarrow\dfrac{x+91}{89}+\dfrac{x+91}{86}>\dfrac{x+91}{83}+\dfrac{x+91}{80}\)

\(\Leftrightarrow\dfrac{x+91}{89}+\dfrac{x+91}{86}-\dfrac{x+91}{83}-\dfrac{x+91}{80}>0\)

\(\Leftrightarrow\left(x+91\right)\left(\dfrac{1}{89}+\dfrac{1}{86}-\dfrac{1}{83}-\dfrac{1}{80}\right)>0\)

Ta có: \(\dfrac{1}{89}+\dfrac{1}{86}+\dfrac{1}{83}+\dfrac{1}{80}< 0\)

\(\Leftrightarrow x+91< 0\)

\(\Leftrightarrow x< -91\)

Vậy...........

5 tháng 4 2021

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

5 tháng 4 2021

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

NV
29 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{1}{x+1+\frac{1}{x}}+\frac{2}{x+2+\frac{1}{x}}=\frac{8}{15}\)

Đặt \(x+1+\frac{1}{x}=a\)

\(\frac{1}{a}+\frac{2}{a+1}=\frac{8}{15}\)

\(\Leftrightarrow a+1+2a=\frac{8}{15}a\left(a+1\right)\)

\(\Leftrightarrow8a^2-37a-15=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-\frac{3}{8}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1+\frac{1}{x}=5\\x+1+\frac{1}{x}=-\frac{3}{8}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+1=0\\x^2+\frac{11}{8}x+1=0\end{matrix}\right.\)