Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
⇒ 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
⇒ 9x - 61 = 5x + 10
⇒ 4x = 71
⇒ x = 17,7
\(\Rightarrow\) 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
\(\Rightarrow\) 9x - 61 = 5x + 10
\(\Rightarrow\) 4x = 71
\(\Rightarrow\) x = 17,75
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`
\(D\left(x\right)=-4x^3-4x^3-x^2-x^2+2x+3x+5=0\)
\(-8x^3-2x^2+5x+5=0\)
\(\left(-8x^2-10x-5\right)\left(x-1\right)=0\)
TH1 : \(x=1\)
TH2 : cj phân tích như vậy nhé
\(\Delta=\left(-2\right)^2-4.\left(-8\right).\left(-5\right)=4-160=-156< 0\)
Nên phương trình vô nghiệm (P/s chỗ này : đừng chép vào bài TH2 nhé, cj thử thôi !)
Vậy x = 1
\(-4x^3-4x^3-x^2-x^2+2x+3x+5=0\)
\(< =>-8x^3-2x^2+5x+5=0\left(1\right)\)
Nháp : dùng pp nhẩm nghiệm ta thấy \(-8-2+5+5=0\)
Nên phương trình nhận 1 là nghiệm
Dùng lược đồ hóc-ne
\(\left(1\right)< =>\left(x-1\right)\left(-8x^2-10x-5\right)=0\)
\(< =>\orbr{\begin{cases}x-1=0\\-8x^2-10x-5=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1\\\Delta=\left(-10\right)^2-4.\left(-5\right)\left(-8\right)=100-160=-60\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1\\vo-nghiem\end{cases}}\)
Vậy nghiệm của đa thức trên là 1
Vì \(\left|x+2\right|+\left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|>0\) nên \(4x>0\) hay \(x>0\)
\(\Rightarrow x+2+x+\dfrac{3}{5}+x+\dfrac{1}{2}=4x\)
\(3x+2+\dfrac{3}{5}+\dfrac{1}{2}=4x\)
\(3x+\dfrac{31}{10}=4x\)
\(\Rightarrow4x-3x=\dfrac{31}{10}\)
\(\Rightarrow x=\dfrac{31}{10}\)
Lời giải:
Vì $|x+2|+|x+\frac{3}{5}|+|x+\frac{1}{2}|\geq 0$ với mọi $x$
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0$.
Khi đó:
$x+2>0; x+\frac{3}{5}>0; x+\frac{1}{2}>0$
$\Rightarrow |x+2|+|x+\frac{3}{5}|+|x+\frac{1}{2}|=4x$
$\Rightarrow x+2+x+\frac{3}{5}+x+\frac{1}{2}=4x$
$\Rightarrow 3x+\frac{31}{10}=4x$
$\Rightarrow x=\frac{31}{10}$ (tm)
Ta có:
\(\left|x-5\right|+\left|2-4x\right|=\left|x-5\right|+\left|\dfrac{1}{2}-x\right|+3\left|\dfrac{1}{2}-x\right|\)
Mà \(\left|x-5\right|+\left|\dfrac{1}{2}-x\right|\ge\left|x-5+\dfrac{1}{2}-x\right|=\dfrac{9}{2}>4\)
\(\Rightarrow\left|x-5\right|+\left|2-4x\right|\ge4+3\left|\dfrac{1}{2}-x\right|>4>3\)
Vậy pt đã cho vô nghiệm