\(\sqrt{x^2+5x+6}\) + 4 = 0

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt căn x^2+5x+6=a

=>a^2=x^2+5x+6

PT sẽ là a^2-2-3a+4=0

=>a^2-3a+2=0

=>a=1 hoặc a=2

=>x^2+5x+6=1 hoặc x^2+5x+6=4

=>\(x\in\left\{\dfrac{-5+\sqrt{5}}{2};\dfrac{-5-\sqrt{5}}{2};\dfrac{-5+\sqrt{17}}{2};\dfrac{-5-\sqrt{17}}{2}\right\}\)

NV
16 tháng 2 2020

1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)

\(t^3+2=2t-2\)

\(\Leftrightarrow t^3-2t+4=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)

\(\Rightarrow t=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)

\(\Leftrightarrow x^2+5x-2=-8\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)

\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)

14 tháng 12 2015

\(x^2+5x+4-3\sqrt{x^2+5x+2}=6\)

\(x^2+5x+2+2-3\sqrt{x^2+5x+2}=6\)

Đặt  \(t=\sqrt{x^2+5x+2}\)  (t >= 0)

=>  t2 - 3t - 4 = 0 => t1 = -1 (loại) và t2 = 4

=> \(\sqrt{x^2+5x+2}=4\)

\(x^2+5x+2=16\)

\(x^2+5x-14=0\)

x1=-7; x2 = 2

28 tháng 10 2020

a, ĐKXĐ: \(-3\le x\le6\)

\(pt\Leftrightarrow3+x+6-x+2\sqrt{\left(3+x\right)\left(6-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(3+x\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

b, ĐKXĐ: \(x\ge4\)

\(pt\Leftrightarrow\sqrt{x-4+4\sqrt{x-4}+4}+x+2+\sqrt{x-4}=8\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+x+2+\sqrt{x-4}=8\)

\(\Leftrightarrow\sqrt{x-4}+2+x+2+\sqrt{x-4}=8\)

\(\Leftrightarrow2\sqrt{x-4}=4-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\4\left(x-4\right)=\left(4-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\x^2-12x+32=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

28 tháng 10 2020

e, Đặt \(y=x-1\) ta có

\(pt\Leftrightarrow\left(y+4\right)^4+\left(y-4\right)^4=1312\)

\(\Leftrightarrow2y^4+192y^2-800=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2=4\\y^2=-100\left(l\right)\end{matrix}\right.\Leftrightarrow y=\pm2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

NV
16 tháng 2 2020

a/ ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)

b/ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)

Thay \(x=1\) vào pt thấy ko thỏa mãn

Vậy pt vô nghiệm

d/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)

31 tháng 10 2016

x=3 hoặc x=1