
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

a: x-2y=3
=>2y=x-3
=>\(y=\frac{x-3}{2}\)
Vậy: \(\begin{cases}x\in R\\ y=\frac{x-3}{2}\end{cases}\)
b: 5x(2x-3)=0
=>x(2x-3)=0
=>\(\left[\begin{array}{l}x=0\\ 2x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac32\end{array}\right.\)
c: \(\frac{2}{x}=1\) (ĐKXĐ: x<>0)
=>\(x=\frac22=1\) (nhận)
d: 2x+1>0
=>2x>-1
=>\(x>-\frac12\)

1/ \(x^3-x^2-x=\frac{1}{3}\Leftrightarrow3x^3-3x^2-3x=1\Leftrightarrow x^3+3x^2+3x+1=4x^3\)
\(\Leftrightarrow\left(x+1\right)^3=\left(\sqrt[3]{4}x\right)^3\Leftrightarrow x+1=\sqrt[3]{4}x\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
2/ ĐKXĐ \(x\ge1\)
\(3+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\Leftrightarrow3=\sqrt{\left(\sqrt{x-1}-1\right)^2}\Leftrightarrow\left|\sqrt{x-1}-1\right|=3\)
Tới đây xét trường hợp rồi giải :)

ĐK: \(\hept{\begin{cases}\frac{1}{x^3+1}\ge0\\\frac{x^2-x+1}{x+1}\ge0\end{cases}\Leftrightarrow x+1>0\Leftrightarrow x>-1.}\)
Khi đó ta có: \(pt\Leftrightarrow\sqrt{\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)
\(\Leftrightarrow\sqrt{\frac{x+1}{x^2-x+1}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)
Đặt \(\sqrt{\frac{x+1}{x^2-x+1}}=a\left(a>0\right)\), ta có \(a-\frac{2}{a}+1=0\Leftrightarrow a^2+a-2=0\Rightarrow a=1.\)
Vậy \(\frac{x+1}{x^2-x+1}=1\Rightarrow x+1=x^2-x+1\Leftrightarrow x^2-2x=0\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}\left(tmđk\right)}\)
cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn

\(\sqrt{x+2}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(< =>\sqrt{x+1}+\left(2x+2\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(< =>\left(\sqrt{x+1}\right)^2+\left(2x+2\right)^2=\left(x-1\right)^2+\left(\sqrt{1-x}\right)^2+\left(3\sqrt{1-x^2}\right)^2\)
\(< =>x+1+4x^2+8x+4=x^2-2x+1+1-x+9-9x^2\)
\(< =>4x^2-x^2+9x^2+x+8x+2x+x+1+4-1-1-9=0\)
\(< =>12x^2+12x-6=0\)
\(\left(a=12;b=12;b'=6;c=-6\right)\)
\(\Delta'=b'^2-ac\)
\(=6^2-12.\left(-6\right)\)
\(=36+72\)
\(=108\)
\(\sqrt{\Delta'}=\sqrt{108}=6\sqrt{3}\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-6+6\sqrt{3}}{12}=\frac{-1+\sqrt{3}}{2}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-6-6\sqrt{3}}{12}=\frac{-1-\sqrt{3}}{2}\)
CHÚC BẠN HỌC TỐT !!!!!!!!!!!!!
Cái đề mình viết sai rồi nha
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1=x}+3\sqrt{1-x^2}\) mới đúng nha
Điều kiện: x ≠ 1 2 và x ≠ − 1. Từ phương trình đã cho, ta có: 5 x 2 − 14 x + 8 = 0.
5 x 2 − 14 x + 8 = 0 ⇔ x = 2 hoặc x = 4 5 .