Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2
\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)
Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)
Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:
\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)
\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)
\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)
Bình phương hai vế:
\(100\left(1+2m^2\right)=36m^4+72m^2+36\)
\(\Leftrightarrow36m^4-128m^2-64=0\)
Đặt \(m^2=t\left(t\ge0\right)\)
Phương trình trở thành \(36t^2-128t-64=0\)
\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)
Vậy t = 4\(\Rightarrow m=\pm2\)
Vậy khi m =-2 hoặc 2 thì phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)
a) pt (1) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_1=1-4m>0\\m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)
pt (2) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_2=1-4m>0\\\frac{1}{m}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)
=> để 2 pt có 2 nghiệm dương phân biệt thì \(0< m< \frac{1}{4}\)
b) \(x_1x_2x_3+x_2x_3x_4+x_3x_4x_1+x_4x_1x_2=x_1x_2\left(x_3+x_4\right)+x_3x_4\left(x_1+x_2\right)=m.\frac{1}{m}+\frac{1}{m}.1=\frac{1}{m}+1>\frac{1}{\frac{1}{4}}+1=5\)
a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình
hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)
Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1
b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)
\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)
Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)
\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)
Vậy với \(m=0\)thỏa mãn yêu cầu bài toán
1/ Điều kiện xác định
\(\hept{\begin{cases}2IxI-1\ge0\\x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0,5orx\le-0,5\\x\le0\end{cases}}\Leftrightarrow x\le-0,5}\)
Bình phương 2 vế ta được
\(x^2=2IxI-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x=x^2+1\\2x=-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=-1\end{cases}}}\)
Vậy nghiệm pt là x = -1
2/ \(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\)
\(\ge2\sqrt{5\times180}+5=65\)
Đạt được khi x = 7
3/ \(\hept{\begin{cases}x\ge0\\-\sqrt{x}>-9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\\sqrt{x}< 9\end{cases}\Leftrightarrow0\le x< 81}\)
Có vô số giá trị thực x thỏa mãn cái đó
4/ \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)
\(\Leftrightarrow Ix-1I-Ix-2I=x-3\)
Tới đây thì đơn giản rồi b tự làm nốt nhé
- Điều kiện: x ≠ ±3
- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.
- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3
x1 có thỏa mãn điều kiện nói trên
x2 không thỏa mãn điều kiện nói trên
Vậy nghiệm của phương trình đã cho là: x = 1