K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có pt: |x + 2| + |2x - 1| = 4 (1)

Lập bảng xét dấu: 

 \(-\infty\)-2 1/2\(+\infty\)
|x + 2|-x - 20x + 2x + 2x + 2
|2x - 1|1 - 2x1 - 2x1 - 2x02x - 1
|x + 2| + |2x - 1|-3x - 11 - 2x-x + 3x + 23x + 1

Xét các trường hợp:

TH1: Với \(x< -2\) thì (1) <=> -3x - 1 = 4 <=> -3x = 5 <=> x = \(-\frac{5}{3}\)(loại, không thuộc khoảng đg xét)

TH2: Với x = 2 thì (1) <=> 1 - 2x = 4 <=> 2x = -3 <=> x = \(-\frac{3}{2}\)(vô lý, mâu thuẫn vs giả thiết x = 2)

TH3: Với \(-2< x< \frac{1}{2}\) thì (1) <=> -x + 3 = 4 <=> -x = 1 <=> x = -1 (thỏa mãn, thuộc khoảng đg xét)

TH4: Với \(x=\frac{1}{2}\) thì (1) <=> x + 2 = 4 <=> x = 2 (vô lý, mâu thuẫn với giả thiết \(x=\frac{1}{2}\))

TH5: Với \(x>\frac{1}{2}\) thì (1) <=> 3x + 1 = 4 <=> 3x = 3 <=> x = 1 (thỏa mãn, thuộc khoảng đg xét)

Vậy tập nghiệm của pt là \(S=\left\{\pm1\right\}\)

8 tháng 4 2018

TH1: Với x < −2 thì (1) <=> -3x - 1 = 4 <=> -3x = 5 <=> x = − 3 5 (loại, không thuộc khoảng đg xét) TH2: Với x = 2 thì (1) <=> 1 - 2x = 4 <=> 2x = -3 <=> x = − 2 3 (vô lý, mâu thuẫn vs giả thiết x = 2) TH3: Với −2 < x < 2 1  thì (1) <=> -x + 3 = 4 <=> -x = 1 <=> x = -1 (thỏa mãn, thuộc khoảng đg xét) TH4: Với x = 2 1  thì (1) <=> x + 2 = 4 <=> x = 2 (vô lý, mâu thuẫn với giả thiết x = 2 1 ) TH5: Với x > 2 1  thì (1) <=> 3x + 1 = 4 <=> 3x = 3 <=> x = 1 (thỏa mãn, thuộc khoảng đg xét) Vậy tập nghiệm của pt là S = {±1}

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

5 tháng 3 2020

\(\left(x+1\right)^3-\left(x+2\right)\left(x-4\right)=\left(x-2\right)\left(x^2+2x+4\right)-2x^2\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^2-2x-8\right)=x^3-8-2x^2\)

\(\Leftrightarrow3x^2+3x+1-x^2+2x+8=-8-2x^2\)

\(\Leftrightarrow4x^2+5x+17=0\)

Ta có \(\Delta=5^2-4.4.17< 0\)

Vậy pt vô nghiệm

28 tháng 4 2016

  =>(2x-1)2-(2x+1)2=-8x

=>-8x=4(x-3)

=>-8x=4x-12

=>-8x-4x=-12

=>-12x=-12

=>x=1

1 tháng 2 2020

Ta có : \(\frac{x^4}{2x^2+1}+\frac{2x^2+1}{x^4}=2\)

Đặt \(t=\frac{x^4}{2x^2+1}\), ta có :

\(t+\frac{1}{t}=2\)

\(\Leftrightarrow t-2+\frac{1}{t}=0\)

\(\Leftrightarrow\frac{t^2-2t+1}{t}=0\)

\(\Leftrightarrow\left(t-1\right)^2=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow\frac{x^4}{2x^2+1}=1\)

\(\Leftrightarrow x^4=2x^2+1\)

\(\Leftrightarrow x^4-2x^2-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=1+\sqrt{2}\left(tm\right)\\x^2=1-\sqrt{2}\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{1+\sqrt{2}}\\x=\sqrt{1+\sqrt{2}}\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\sqrt{1+\sqrt{2}};\sqrt{1+\sqrt{2}}\right\}\)

2 tháng 2 2020

Thêm cho tớ : \(ĐKXĐ:x\ne0\)

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

10 tháng 3 2019

Đặt \(y=x^2-2x+3=\left(x-1\right)^2+2\ge2\), ta có:

\(x^2-2x+3=\frac{6}{x^2-2x+4}\Leftrightarrow y=\frac{6}{y+1}\Leftrightarrow y\left(y+1\right)=6\Leftrightarrow y^2+y-6=0\)

\(\Leftrightarrow\left(y+3\right)\left(y-2\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=-3\end{cases}\Rightarrow y=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1}\)

Vậy \(S=\left\{1\right\}\)

13 tháng 2 2017

CHỊU!@@@@@@@@@@@@

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)