K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

6 tháng 2 2018

chiu thoi

15 tháng 4 2020

x2-7x-8=0

<=> x2-8x+x-8=0

<=> x(x-8)+(x-8)=0

<=> (x-8)(x+1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+7\right)\left(x-2\right)\left(x+8\right)+8=0.\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0.\)

đặt \(\left(x^2+6x-7\right)=a.\)

\(a\left(a-9\right)+8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=8\end{cases}}\)

thay ròi giả tiếp .

8 tháng 2 2019

(x^2-x-2x+2)(x^2+8x+7x+56)+8=0

{x(x-1)-2(x-1)}{x(x+8)+7(x+8)}+8=0

(x-1)(x-2)(x+8)(x+7)+8=0

(x-1)(x-2)(x+8)(x+7)=-8

20 tháng 3 2021

( x2 + 3x - 1 )2 + 2( x2 + 3x - 1 ) - 8 = 0

Đặt t = x2 + 3x - 1

pt <=> t2 + 2t - 8 = 0

<=> ( t - 2 )( t + 4 ) = 0

<=> ( x2 + 3x - 1 - 2 )( x2 + 3x - 1 + 4 ) = 0

<=> ( x2 + 3x - 3 )( x2 + 3x + 3 ) = 0

<=> \(\orbr{\begin{cases}x^2+3x-3=0\\x^2+3x+3=0\end{cases}}\)

+) x2 + 3x - 3 = 0

Δ = b2 - 4ac = 9 + 12 = 21

Δ > 0, áp dụng công thức nghiệm thu được \(x_1=\frac{-3+\sqrt{21}}{2};x_2=\frac{-3-\sqrt{21}}{2}\)

+) x2 + 3x + 3 = 0

Δ = b2 - 4ac = 9 - 12 = -3

Δ < 0 nên vô nghiệm

Vậy phương trình có hai nghiệm \(x_1=\frac{-3+\sqrt{21}}{2};x_2=\frac{-3-\sqrt{21}}{2}\)