K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

\(|x-1|=|x+2|\)

Nếu x>=1; ta có:

x-1= x+2 -> vô nghiệm

Nếu x<1 và x>=-2. ta có:

-x+1=x+2-> x=-1/2

Nếu x<-2; ta có

-x+1= -x-2 -> Vô nghiệm.

Vậy đáp số x=-1/2

2 tháng 3 2021

| x - 1 | = | x + 2 |

Với x < -2 pt <=> -( x - 1 ) = -( x + 2 ) <=> -x + 1 = -x - 2 ( vô nghiệm :)) )

Với -2 ≤ x < 1 pt <=> -( x - 1 ) = x + 2 <=> -x + 1 = x + 2 <=> -2x = 1 <=> x = -1/2 ( tm )

Với x ≥ 1 pt <=> x - 1 = x + 2 ( vô nghiệm :)) )

Vậy phương trình có nghiệm duy nhất x = -1/2

NV
11 tháng 2 2020

Câu hỏi của Đặng Thị Thu Thảo - Toán lớp 8 | Học trực tuyến

Bạn tham khảo

27 tháng 3 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)

\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)

\(\Leftrightarrow3x^2-17x+24=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)

\(\Leftrightarrow x=3;x=\frac{8}{3}\)

Vậy tập nghiệm của phương trình  là \(S=\left\{3;\frac{8}{3}\right\}\)

23 tháng 12 2017

Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2

<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0

<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0

<=> x4 - x3 - x2 - 5x - 2 = 0 

9 tháng 4 2019

\(x^4-2x^2+1=4x+1\)

\(x^4-2x^2-4x=0\\ x\left(x^3-2x-4\right)=0\\ x\left(x-2\right)\left(x^2+2x+2\right)=0\\ \)

mà x2+2x+2>0 

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

15 tháng 8 2018

a) Ta có :  \(x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1>0\forall x\)

b) Ta có :  \(4x-x^2-5\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

Vậy ...

12 tháng 3 2017

\(\Leftrightarrow5+3x^2+9x< 3x^2+6x-x-2\)

\(\Leftrightarrow9x-6x+x< 3x^2-3x^2-5-2\)

\(\Leftrightarrow2x< -7\)

\(\Leftrightarrow x< \frac{-7}{2}\)

DD
8 tháng 5 2021

\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)

\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)

\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)

\(\Leftrightarrow x+2021=0\)

\(\Leftrightarrow x=-2021\)

13 tháng 4 2017

Lời giải

Khử trị tuyệt đối

\(\left|\left(y-x-1\right)^2+x-2\right|+4=2x-\left|\left(x-1\right)\left(x-2\right)\right|\)

VT >= 4 =>để có nghiệm VP >=4

=> x>=2

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)\ge0\\\left(y-x-1\right)^2+\left(x-2\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\left(y-x-1\right)^2+x\right|=\left(y-x-1\right)^2+\left(x-2\right)\\\left|\left(x-1\right)\left(x-2\right)\right|=\left(x-1\right)\left(x-2\right)\end{matrix}\right.\)

Phương trình tương đương hệ

\(\left\{{}\begin{matrix}x\ge2\left(1\right)\\\left(x-y+1\right)^2+\left(x-2\right)+4=2x-\left(x-1\right)\left(x-2\right)\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(x-y+1\right)^2=\left(x-2\right)-\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-y+1\right)^2=\left(x-2\right)\left[1-\left(x-1\right)\right]=-\left(x-2\right)^2\)

\(\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)=0\\x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Kết luận

(x,y) =(2,3) là nghiệm duy nhất