Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: x ≥ 1 ( * )
Ta có: x 2 − x − 4 = 2 x − 1 ( 1 − x ) < = > x 2 + 2 x x − 1 + x − 1 − 2 ( x + x − 1 ) − 3 = 0
Đặt: x + x − 1 = y ( y ≥ 1 ) ( * * ) phương trình trở thành y 2 − 2 y − 3 = 0
y 2 − 2 y − 3 = 0 < = > ( y + 1 ) ( y − 3 ) = 0 < = > y = − 1 y = 3
+ Với y = -1 không thỏa mãn điều kiện (**).
+ Với y = 3 ta có phương trình:
x + x − 1 = 3 < = > x − 1 = 3 − x < = > x ≤ 3 x − 1 = 9 − 6 x + x 2 < = > x ≤ 3 x 2 − 7 x + 10 = 0 < = > x ≤ 3 x = 2 x = 5 < = > x = 2
thỏa mãn điều kiện (*). Vậy phương trình có nghiệm x = 2.
????
xin lỗi nha !
mình mới học lớp 3
mà bài này khó nắm
a) 3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0
+ Giải (1):
3 x 2 – 7 x – 10 = 0
Có a = 3; b = -7; c = -10
⇒ a – b + c = 0
⇒ (1) có hai nghiệm x 1 = - 1 v à x 2 = - c / a = 10 / 3 .
+ Giải (2):
2 x 2 + ( 1 - √ 5 ) x + √ 5 - 3 = 0
Có a = 2; b = 1 - √5; c = √5 - 3
⇒ a + b + c = 0
⇒ (2) có hai nghiệm:
Vậy phương trình có tập nghiệm
b)
x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0
+ Giải (1): x 2 – 2 = 0 ⇔ x 2 = 2 ⇔ x = √2 hoặc x = -√2.
+ Giải (2): x + 3 = 0 ⇔ x = -3.
Vậy phương trình có tập nghiệm S = {-3; -√2; √2}
c)
x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0
+ Giải (1): 0,6x + 1 = 0 ⇔
+ Giải (2):
x 2 – x – 1 = 0
Có a = 1; b = -1; c = -1
⇒ Δ = ( - 1 ) 2 – 4 . 1 . ( - 1 ) = 5 > 0
⇒ (2) có hai nghiệm
Vậy phương trình có tập nghiệm
d)
x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0
⇔ (3x-10).x.(2x+1)=0
+ Giải (1): 3x – 10 = 0 ⇔
+ Giải (2):
1:
\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)
=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3
=>x+1=13/11 và y-1=-13/18
=>x=2/11 và y=5/18
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)
\(A=\dfrac{1}{x_1-3}+\dfrac{1}{x_2-3}=\dfrac{x_2-3+x_1-3}{\left(x_1-3\right)\left(x_2-3\right)}=\dfrac{x_1+x_2-6}{x_1x_2-3\left(x_1+x_2\right)+9}\)
\(=\dfrac{\dfrac{3}{2}-6}{-\dfrac{1}{2}-3.\dfrac{3}{2}+9}=...\) (em tự bấm máy)
\(B=x_1^2x_2-4-x_1x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)-4-x_1x_2\)
\(=-\dfrac{1}{2}.\dfrac{3}{2}-4-\left(-\dfrac{1}{2}\right)=...\)
\(C=1-\left(x_1^2+x_2^2\right)=1-\left(x_1+x_2\right)^2+2x_1x_2=1-\left(\dfrac{3}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)=...\)
\(D=x_1^3x_2^3+x_1^3+x_2^3=\left(x_1x_2\right)^3+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(-\dfrac{1}{2}\right)^3+\left(\dfrac{3}{2}\right)^3-3.\left(-\dfrac{1}{2}\right).\dfrac{3}{2}=...\)
a)
5 x 2 − 3 x + 1 = 2 x + 11 ⇔ 5 x 2 − 3 x + 1 − 2 x − 11 = 0 ⇔ 5 x 2 − 5 x − 10 = 0
Có a = 5; b = -5; c = -10 ⇒ a - b + c = 0
⇒ Phương trình có hai nghiệm: x 1 = - 1 v à x 2 = - c / a = 2 .
Vậy phương trình có tập nghiệm S = {-1; 2}.
⇔ 6 x 2 − 20 x = 5 ( x + 5 ) ⇔ 6 x 2 − 20 x − 5 x − 25 = 0 ⇔ 6 x 2 − 25 x − 25 = 0
Có a = 6; b = -25; c = -25
⇒ Δ = ( - 25 ) 2 – 4 . 6 . ( - 25 ) = 1225 > 0
⇒ Phương trình có hai nghiệm
Vậy phương trình có tập nghiệm
⇔ x 2 = 10 − 2 x ⇔ x 2 + 2 x − 10 = 0
Có a = 1; b = 2; c = -10 ⇒ Δ ’ = 1 2 – 1 . ( - 10 ) = 11 > 0
⇒ Phương trình có hai nghiệm
Cả hai nghiệm đều thỏa mãn điều kiện xác định.
Vậy phương trình có tập nghiệm
⇔ ( x + 0 , 5 ) ⋅ ( 3 x − 1 ) = 7 x + 2 ⇔ 3 x 2 + 1 , 5 x − x − 0 , 5 = 7 x + 2 ⇔ 3 x 2 − 6 , 5 x − 2 , 5 = 0
Vậy phương trình có tập nghiệm
⇒ Phương trình có hai nghiệm
Vậy phương trình có tập nghiệm
Phương trình có hai nghiệm:
Vậy phương trình có tập nghiệm
Ta có: x - 1 3 + 2x = x 3 – x 2 – 2x +1
⇔ x 3 – 3 x 2 + 3x - 1 + 2x = x 3 – x 2 - 2x + 1
⇔ 2 x 2 – 7x +2 =0
∆ = - 7 2 -4.2.2 = 49 - 16 = 33 > 0
∆ = 33
(x – 1)4 = x2 – 2x + 3 (1)
(1) ( x − 1 ) 2 2 = x 2 − 2 x + 3 ⇔ ( x 2 − 2 x + 1 ) 2 = x 2 − 2 x + 3
Đặt t = x2 – 2x + 1, t≥0, phương trình (2) trở thành t 2 = t + 2 ⇔ t 2 − t − 2 = 0 ⇔ ( t − 2 ) ( t + 1 ) = 0
ó t = 2 (tm) hoặc t = –1 (loại)
Với t = 2 có x 2 − 2 x + 1 = 2 ⇔ x 2 − 2 x − 1 = 0 ⇔ x = 1 ± 2
Vậy tập nghiệm của phương trình (1) là 1 − 2 ; 1 + 2