K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

26 tháng 8 2016

k biet nen k tra loi

27 tháng 8 2016

tham khảo Câu hỏi của Đỗ Thu Hà - Toán lớp 9 - Học toán với OnlineMath

9 tháng 12 2017

Câu trả lời hay nhất:  Giai cau a) 
x³ - y³ = xy + 8 
<=> (x - y)³ + 3xy(x - y) - xy = 8 
<=> (x - y)³ + xy(3x - 3y - 1) = 8 
<=> (3x - 3y)³ + 27xy(3x - 3y - 1) = 216 
<=> (3x - 3y)³ - 1 + 27xy(3x - 3y - 1) = 215 
<=> (3x - 3y - 1)[(3x - 3y)² + (3x - 3y) + 1] + 27xy(3x - 3y - 1) = 215 
<=> (3x - 3y - 1)[(3x - 3y)² + (3x - 3y) + 1 + 27xy] = 215 
<=> (3x - 3y - 1)(9x² + 9y² - 9xy + 3x - 3y + 1) = 215 = 5.43 = 43.5 = (- 5)(- 43) = (- 43)(- 5) 

{ 3x - 3y - 1 = 5 (1) 
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = 43 (2) 
Tu (1) => y = x - 2 thay vao (2) khai trien rut gon co x(x - 2) = 0 
=> x = 0; x = 2 => y = - 2; y = 0 
Truong hop nay he co 2 nghiem nguyen (x;y) = (0; - 2) va (2; 0) 

{ 3x - 3y - 1 = 43 (3) 
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = 5 (4) 

{ 3x - 3y - 1 = - 5 (5) 
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = - 43 (6) 

{ 3x - 3y - 1 = - 43 (7) 
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = - 5 (8) 
Ban tu giai tiep 3 he sau ( chu y chon nghiem nguyen ) roi ket luan 
-------------------------------------… 
Ban xem vi du sau: Giai pt nghiem nguyen 
2x² - 2x - 2y² = - 3 
<=> 4x² - 4x - 4y² + 1 = - 5 
<=> (2x + 2y - 1)(2x - 2y - 1) = - 5 = - 1.5 = 1.(- 5) = 5.( -1 ) = (- 5).1 

{ 2x + 2y - 1 = - 1 
{ 2x - 2y - 1 = 5 
=> x = 3/2 ; y = - 3/2 ( loai ) 

{ 2x + 2y - 1 = 1 
{ 2x - 2y - 1 = - 5 
=> x = - 1/2 ; y = 3/2 ( loai ) 

{ 2x + 2y - 1 = 5 
{ 2x - 2y - 1 = - 1 
=> x = 3/2 ; y = 3/2 ( loai ) 

{ 2x + 2y - 1 = - 5 
{ 2x - 2y - 1 = 1 
=> x = - 1/2 ; y = - 3/2 ( loai) 
KL : Pt khong co nghiem nguyen 
--------------- 
Voi dang phuong trinh nghiem nguyen bac 2 nay minh bay ban mot thu thuat phan h thanh nhan tu de lam, bat ky bai nao cung giai quyet duoc 
Vi du : Xet pt : 2x² - 2x + 3 = 2y² 
Buoc 1 : Chuyen ta ca cac hang tu co chua an sang mot ve 
2x² - 2x - 2y² = - 3 
Them vao 2 ve mot so a nao do 
2x² - 2x - 2y² + a = a - 3 
Xem ve trai la pt bac 2 an so x; tham so y can phan h thanh nhan tu. Muon vay delta phai la so chinh phuong

= 1 - 2(- 2y² + a) = 4y² + 1 - 2a 
De  la so chinhs phuong chon a = 1/2 =>  = 4y² 
Khi do tam thuc ve trai co 2 nghiem : x = (1 - 2y)/2; x = (1 + 2y)/2 
=> x + y - 1/2 = 0 va x - y - 1/2 = 0 
Vay tam thuc co the phan h thanh : (x + y - 1/2)(x - y - 1/2) = - 5/2 
hay (2x + 2y - 1)(2x - 2y - 1) = - 5

có đúng ko bn

4 tháng 12 2016

\(x-2008=X;y-2009=Y;z-2010=Z\)

\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)

\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)

\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)

\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)

\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

9 tháng 6 2015

Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)

PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)

Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:

\(2.\sqrt{x-2}\le x-2+1=x-1\)

\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)

\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)

=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)

Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1

=> x = 3; y = -2008; z = 2011 là nghiệm của PT

26 tháng 3 2016

Điều kiện \(x\ge2\) vs \(y\ge-2009\) vs \(z\ge2010\)  Khi đó

PT \(\Leftrightarrow\) \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

nên => x=3 ; y=-2008 vs z=2011

10 tháng 3 2018

PT thứ hai của hệ tương đương với:

\(xy\left(x^2+y^2\right)+2=x^2+y^2+2xy\)

\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)

+) TH1: xy = 1 thay vào PT thứ nhất của hệ đã cho được:

\(5x-4y+3y^3-2\left(x+y\right)=0\)

\(\Leftrightarrow y^3-2y+x=0\)

\(\Leftrightarrow y^4-2y^2+1=0\)

\(\Leftrightarrow y=\pm1\Rightarrow x=\pm1\)

TH2: x2 + y2 = 2, thay vào PT thứ nhất của hệ đã cho được:

\(5x^2y-4xy^2+3y^2-\left(x^2-y^2\right)\left(x+y\right)=0\)

\(\Leftrightarrow2y^2+4x^2y-5xy^2-x^3=0\)

\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)

\(\Leftrightarrow\left(y-x\right)^2\left(2xy-x\right)=0\)

Với: x = y tìm đc 2 nghiệm: (x, y) = (1; 1); ( \(\pm\)1)

Với: x = 2y thay vào x2 + y2 = 2, ta có: \(y=\pm\sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)

Vậy HPT đã cho có 4 nghiệm: \(\left(x,y\right)=\left(1;1\right);\left(\pm1\right);\left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right);\left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right)\)

26 tháng 9 2017

Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:

Ta có:

\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)

\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)

\(\Rightarrow x=2013;y=2014;z=2015\)

P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé