Giải phương trình với nghiệm nguyên dương:

2^x+57=y^2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

Khó quá..............................................................................

1 tháng 6 2021

Với \(x=0\Rightarrow y=\ne2\)

Với \(x>1\Rightarrow\)VT lẻ \(\Rightarrow y=2x+1\)

                   \(2^x+2=\left(2x+1\right)^2-1=4x\left(x+1\right)\)

 \(\Leftrightarrow2^{x-1}+1=2x\left(x+1\right)\)

do \(x>1\Rightarrow2^{x-1}\)chẵn \(\Rightarrow\)VT lẻ , mà VP chẵn

                                              \(\Rightarrow\)P/t vô nghiệm

Vậy p/t có nghiệm là \(\hept{\begin{cases}x=0\\y=\ne2\end{cases}}\)

19 tháng 5 2017

x^2 - 25 = y(y + 6) 
<> x^2 - 25 + 9 = y^2 + 6y + 9 
<> x^2 - 16 = (y + 3)^2 
<> x^2 - (y + 3)^2 = 16 
<>(x - y - 3)(x + y +3) = 16 
vi x,y nguyên nên xay ra các trường hợp sau 
+ x - y - 3 = 16 và x + y + 3 = 1 giải hệ này loại 
+ x - y -3 = 8 và x + y + 3 = 2 
<>x = 5 và y = -6 
tương tự 
..................................... 
+ x - y - 3 =-8 và x + y + 3 = -2 

6 tháng 3 2020

\(\left(x^2-4\right)+\left(8-5.x\right).\left(x+2\right)+4.\left(x-2\right).\left(x+1\right)=0\)

\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+\left(4.x-8\right).\left(x+1\right)=0\)

\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+4.x^2+4.x-8.x-8=0\)

\(\Leftrightarrow0+4-6.x=0\)

\(\Leftrightarrow4-6.x=0\)

\(\Leftrightarrow-6.x=-4\)

\(\Rightarrow x=\frac{2}{3}\)

Vậy x = \(\frac{2}{3}\)

9 tháng 2 2021

       (2x2+x-6)+3(2x2+x-3)-9=0 

\(\Leftrightarrow\) 2x+ x - 6 + 6x+ 3x - 9 - 9 = 0 

\(\Leftrightarrow\)2x + 6x+ 3x + x = 6 + 9 + 9

\(\Leftrightarrow\)8x2 + 4x = 24

\(\Leftrightarrow\)8x2 + 4x - 24 = 0

\(\Leftrightarrow\)(x+2)(8x-12) = 0

\(\Leftrightarrow\)x + 2 = 0 hoặc 8x - 12 = 0

1) x + 2 = 0 \(\Leftrightarrow\)x = -2

2)8x - 12 = 0 \(\Leftrightarrow\)8x = 12 \(\Leftrightarrow\)x = \(\frac{12}{8}\)

Vậy Tập nghiệm của phương trình đã cho là S ={ -2 ; \(\frac{12}{8}\)}

10 tháng 2 2021

Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)(x;y \(\ne\)0)

<=> \(\frac{x+y}{xy}=\frac{1}{4}\)

<=> 4(x + y) = xy

<=> xy - 4x - 4y =0

<=> x(y - 4) - 4y + 16 = 16

<=> x(y - 4) - 4(y - 4) = 16

<=> (x - 4)(y - 4) = 16

Ta có 16 = 1.16 = 4.4 = (-4).(-4) = (-1).(-16)

Lập bảng xét các trường hợp

x - 41164-4-16-1
y - 41614-4-1-16
x5 (tm)20 (tm)8(tm) 0(loại)-12(loại)3
y20 (tm)5 (tm)8 (tm)0(loại)3-12(loại)

Vây các cặp (x;y) thỏa mãn là (5;20) ; (20;5) ; (8;8)

23 tháng 7 2019

\(x^3-y^3=xy+61\)

\(\Leftrightarrow27x^3-27y^3-27xy-1=1646\)

\(\Leftrightarrow\left(3x\right)^3+\left(-3y\right)^3+\left(-1\right)^3-3.3x.\left(-3y\right).\left(-1\right)=1646\)

Áp dụng hđt sau \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)đc

\(\left(3x-3y-1\right)\left(9x^2+9y^2+1+9xy-3y+3x\right)=1646\)

CÓ \(1646=1.1646=2.823\)

Mà \(\hept{\begin{cases}3x-3y-1< 9x^2+9y^2+1+9xy-3y+3x\\3x-3y-1\equiv2\left(mod3\right)\end{cases}}\)

\(\Rightarrow3x-3y-1=2\)

\(\Rightarrow x=y+1\)

THay vào đề bài

\(\left(y+1\right)^3-y^3=\left(y+1\right)y+61\)

\(\Leftrightarrow y^2+y-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\left(tm\right)\\y=-6\left(loai\right)\end{cases}}\)

VỚi y = 5 thì x = y +  1 = 6

19 tháng 5 2021

sửa lại đề bài : Tìm nghiệm nguyên dương