K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(2)=0

=>\(a\cdot2^2+b\cdot2+c=0\)

=>4a+2b+c=0

=>c=-4a-2b

=>\(f\left(x\right)=ax^2+bx-4a-2b\)

\(=a\left(x^2-4\right)+b\left(x-2\right)\)

\(=a\left(x-2\right)\left(x+2\right)+b\left(x-2\right)\)

\(=\left(x-2\right)\left(ax+2a+b\right)⋮x-2\)

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

14 tháng 3 2017

F(-2)=0=> -8a+4b+c=0 (1)

f(1)=6=> a+b+c=6 (2)

f(-1)=4=> -a+b+c=4 (3)

(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)

-8+4b+5-b=0=> b=1

\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)

18 tháng 6 2019

Giải:

Từ giả thiết ta có:

\(\hept{\begin{cases}f\left(x\right)=\left(x+2\right)q_1\left(x\right)\\\\f\left(x\right)=\left(x^2-1\right)q_2\left(x\right)+x\end{cases}}\)

Suy ra \(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{cases}\Rightarrow\hept{\begin{cases}32+4a-2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-\frac{28}{3}\\b=1\\c=\frac{22}{3}\end{cases}}}\)

18 tháng 6 2019

Đặt f(x) = 2x4+ax2+bx+c

Áp dụng định lí Be - du ta có: r = f(x)

=> {r=f(2)r=f(1)r=f(−1)

Thay x = 2; 1; -1 lần lượt vào f(x) ta được:

{f(2)=32+4a+2b+cf(1)=2+a+b+cf(−1)=2+a−b+c

Mà {f(x)⋮(x−2)f(x)chia(x2−1)dư2x => {32+4a+2b+c=02+a+b+c=22+a−b+c=−2

=> {4a+2b+c=−32(1)a+b+c=0(2)a−b+c=−4(3)

Trừ (2) cho (3) ta được: 2b=4 => b = 2

=> {4a+c=−36(4)a+c=−2(5)

Trừ (4) cho (5) ta được: 3a=−34 => a = −343 => c = 283

Vậy a = −343 ; b = 2 ; c = 283

P/s: Hi vọng bn hiểu!

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+4x^3-8x^2+\left(a+8\right)x^2-x\left(2a+16\right)+\left(2a+16+b\right)x-2\left(2a+16+b\right)+4a+32+2b+c\)

\(=\left(x-2\right)\left(2x^3+4x^2+x\left(a+8\right)+2a+16+b\right)+4a+2b+32+c\)

=>\(\dfrac{f\left(x\right)}{x-2}=2x^3+4x^2+x\left(a+8\right)+2a+16+b+\dfrac{4a+2b+32+c}{x-2}\)

f(x) chia hết cho x-2 nên \(4a+2b+32+c=0\)(1)

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+6x^2+4x^3-16x^2+12x+\left(a+10\right)x^2-4x\left(a+10\right)+3a+30+x\left(4a+28+b\right)+c-3a-30\)

\(=\left(x^2-4x+3\right)\left(2x^2+4x+a+10\right)\)+x(4a+28+b)+c-3a-30

f(x) chia cho x2-4x+3 dư -x+2 nên ta có: 

\(\left\{{}\begin{matrix}4a+28+b=-1\\c-3a-30=2\end{matrix}\right.\)(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+2b+32+c=0\\4a+b+28=-1\\c-3a=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4a+2b+c=-32\\4a+b=-29\\-3a+c=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-3\\-3a+c=32\\4a+b=-29\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+3a=-35\\4a+b=-29\\b+c=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-a=-6\\4a+b=-29\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-29-4a=-29-4\cdot6=-53\\c=-3-b=-3-\left(-53\right)=50\end{matrix}\right.\)

4 tháng 11 2019

Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12

Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)

\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)

Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)

\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)

Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)

\(\Rightarrow b=-2+3.2=4\)

Vậy a= -3; b = 4

4 tháng 11 2019

x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)

Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)

30 tháng 10 2018

bạn học định lí bezout chưa nếu có:

giả sử f(x) chia hết cho x-1 thì áp dụng hệ quả định lí bezout ta có số dư trong phép chia f(x) cho x-1 là

=> f(1) = a.13+b.12+c.1+d=0

<=> a+b+c+d=0

vậy với a+b+c+d=0 thì f(x)chia hết cho x-1