Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)
\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)
Chắc tới đây bạn làm đc rồi nhỉ
\(\sqrt{x^2.\left(x^2+1\right)+1}+\sqrt{3}.\left(x^2+1\right)=3\sqrt{3}.x\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}.x^2+\sqrt{3}=3\sqrt{3}.x\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}=3\sqrt{3}.x-\sqrt{3}.x^2\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}=3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\)
\(\Leftrightarrow\left(\sqrt{x^4+x^2+1}\right)^2=\left(3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\right)\)
\(\Leftrightarrow x^4+x^2+1=-18x^3+3x^4+33x^2-18x+3\)
\(\Leftrightarrow x^4+x^2+1+18x^3-3x^4-33x^2+18x-3=0\)
\(\Leftrightarrow-2x^4-32x^2-2+18x^3+18x=0\)
\(\Leftrightarrow-2\left(x^4+16x^2+1-9x^3-9x\right)=0\)
\(\Leftrightarrow-2\left(x^3-8x^2+8x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow-2\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)^2=0\)
Nhưng vì \(x^2-7x+1\ne0\)nên:
\(x-1=0\Rightarrow x=1\)
\(\Rightarrow x=1\)
\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\Leftrightarrow\frac{\sqrt{x}-1}{1+\sqrt{1-x}}+\frac{1}{1+\sqrt{1-x}}-1=x^2-2x+1\)
\(\Leftrightarrow\frac{x-1}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{-\sqrt{1-x}}{1+\sqrt{1-x}}=\left(1-x\right)^2\)
\(\Leftrightarrow\sqrt{1-x}\left[\left(\sqrt{1-x}\right)^3+\frac{\sqrt{1-x}}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{1}{1+\sqrt{1-x}}\right]=0\)
\(\Leftrightarrow\sqrt{1-x}=0\Leftrightarrow x=1.\)
À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
ĐK \(x\ge0\)
Pt
<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)
<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)
<=> \(4x\sqrt{x+1}=5x+9\)
<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)
<=> \(16x^3-9x^2-90x-81=0\)
<=> \(x=3\)(tm ĐK)
Vậy x=3
a)\(\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}=\sqrt{x+2}\)
ĐK:\(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}-\sqrt{3}=\sqrt{x+2}-\sqrt{3}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x+1-3}{\sqrt{2x+1}+\sqrt{3}}=\frac{x+2-3}{\sqrt{x+2}+\sqrt{3}}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x-2}{\sqrt{2x+1}+\sqrt{3}}=\frac{x-1}{\sqrt{x+2}+\sqrt{3}}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3}}-\frac{x-1}{\sqrt{x+2}+\sqrt{3}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x+1}+\frac{2}{\sqrt{2x+1}+\sqrt{3}}-\frac{1}{\sqrt{x+2}+\sqrt{3}}\right)=0\)
Suy ra x=1
b)\(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-4+\sqrt{3x+1}-\sqrt{\frac{5}{2}}=\frac{1}{x^2}-4+\sqrt{x+2}-\sqrt{\frac{5}{2}}\)
\(\Leftrightarrow\frac{4x^2-8x+3}{-x^2+2x-1}+\frac{3x+1-\frac{5}{2}}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}=\frac{-\left(4x^2-1\right)}{x^2}+\frac{x+2-\frac{5}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\)
\(\Leftrightarrow\frac{2\left(x-\frac{1}{2}\right)\left(2x-3\right)}{-x^2+2x-1}+\frac{6\left(x-\frac{1}{2}\right)}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(x-\frac{1}{2}\right)\left(2x+1\right)}{x^2}-\frac{x-\frac{1}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{2\left(2x-3\right)}{-x^2+2x-1}+\frac{6}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(2x+1\right)}{x^2}-\frac{1}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\right)=0\)
Suy ra x=1/2
96 đặt\(\sqrt{x+7}+\sqrt{6-x}=a\)
=>\(a^2-13=2\sqrt{-x^2-x+42}\)
xong cậu thay vào pt là đc
ĐKXĐ: \(\left\{{}\begin{matrix}x^2+x-1\ge0\\x-x^2+1\ge0\end{matrix}\right.\)
Áp dụng BĐT Cô-si cho các số dương ta có:
\(\sqrt{x^2+x-1}\le\dfrac{\left(x^2+x-1\right)+1}{2}=\dfrac{x^2+x}{2}\) (1)
\(\sqrt{x-x^2+1}\le\dfrac{\left(x-x^2+1\right)+1}{2}=\dfrac{x-x^2+2}{2}\) (2)
Cộng 2 vế của (1) và (2) ta có:
\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\le x+1\) (*)
Phương trình đã cho tương đương với:
\(x^2-x+2\le x+1\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Leftrightarrow x-1=0\Leftrightarrow x=1\) (TM)
Vậy phương trình có nghiệm \(x=1\)
Toán 9