Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT \(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\end{cases}}\)
Xét \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) ( t/m)
Vậy nghiệm của PT là : \(x=\pm1\)
Chúc bạn học tốt !!!
\(x^2+2x\sqrt{x+\frac{1}{x^2}}=8x-1\)
\(\Leftrightarrow x^2+2x\left(x+\frac{1}{x^2}\right)^2=8x-1\)
\(\Leftrightarrow x^2+2x\left(x+\frac{1}{x^2}\right)^2=7x\)
\(\Rightarrow x^2+2x\left(x+\frac{1}{x^2}\right)^2>7x\Rightarrow\)Phương trình vô nghiệm
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\Leftrightarrow\frac{\sqrt{x}-1}{1+\sqrt{1-x}}+\frac{1}{1+\sqrt{1-x}}-1=x^2-2x+1\)
\(\Leftrightarrow\frac{x-1}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{-\sqrt{1-x}}{1+\sqrt{1-x}}=\left(1-x\right)^2\)
\(\Leftrightarrow\sqrt{1-x}\left[\left(\sqrt{1-x}\right)^3+\frac{\sqrt{1-x}}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{1}{1+\sqrt{1-x}}\right]=0\)
\(\Leftrightarrow\sqrt{1-x}=0\Leftrightarrow x=1.\)
\(\sqrt{x^3+1}\left(4x-1\right)=2x^3+x^2+1\)
\(pt\Leftrightarrow\sqrt{x^3+1}=\frac{2x^3+x^2+1}{4x-1}\)
\(\Leftrightarrow\sqrt{x^3+1}-\left(x+1\right)=\frac{2x^3+x^2+1}{4x-1}-\left(x+1\right)\)
\(\Leftrightarrow\frac{x^3+1-\left(x+1\right)^2}{\sqrt{x^3+1}+x+1}=\frac{2x^3-3x^2-3x+2}{4x-1}\)
\(\Leftrightarrow\frac{x^3-x^2-2x}{\sqrt{x^3+1}+x+1}-\frac{2x^3-3x^2-3x+2}{4x-1}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)\left(x+1\right)}{\sqrt{x^3+1}+x+1}-\frac{\left(x+1\right)\left(x-2\right)\left(2x-1\right)}{4x-1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(\frac{x}{\sqrt{x^3+1}+x+1}-\frac{2x-1}{4x-1}\right)=0\)
Suy ra x=2;x=-1 còn 1 nghiệm nữa xấu quá t gg :v
\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)
dat \(\left(x-1\right)\left(x+1\right)=y\)
\(4y-3x=\sqrt[3]{x^2y}\)
\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)
\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)
\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)
\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)
de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)
\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)
câu b tương tự nhé bạn