K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Bài này ở đâu thế b. Cho mình cái đề gốc được không?

\(\Leftrightarrow\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{\left[\left(x-3\right)^2+1\right]\left(4-x\right)}\)

đặt 3-x=a;\(\sqrt{x-1}=b;\sqrt{5-2x}=c\Rightarrow b^2+c^2=4-x\)

\(\Leftrightarrow ab+c=\sqrt{\left(a^2+1\right)\left(b^2+c^2\right)}\)

<=>a2b2+2abc+c2=a2b2+b2+a2c2+c2

<=>b2-2abc+a2c2=0

<=>(b-ac)2=0

<=>b=ac

đến đây thì dễ rồi

19 tháng 7 2019

À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.

19 tháng 7 2019

b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

ĐK \(x\ge0\)

Pt 

<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)

<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)

 <=> \(4x\sqrt{x+1}=5x+9\)

<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)

<=> \(16x^3-9x^2-90x-81=0\)

<=> \(x=3\)(tm ĐK)

Vậy x=3

12 tháng 8 2017

toán lớp 9 thì ai mà biết chỉ lớp 5 thôi

đáp án là : 0 bít !

12 tháng 8 2017

sống bớt xàm đi bạn trẻ

4 tháng 10 2017

\(\sqrt{\left(x+2\right)\left(x-1\right)}+3\sqrt{x+2}=2\left(x+2\right)\)(đk bn tự xd nhé)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-1}+3-2\sqrt{x+2}\right)\)=0

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\\sqrt{x-1}+3=2\sqrt{x+2}\left(1\right)\end{cases}}\)

giai (1) bn se co x=2 kl x=+-2

13 tháng 8 2017

\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)

\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)

dat \(\left(x-1\right)\left(x+1\right)=y\)

\(4y-3x=\sqrt[3]{x^2y}\)

\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)

\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)

\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)

de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)

\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\) 

\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

câu b tương tự nhé bạn

27 tháng 10 2017

Mình Ko biết

26 tháng 9 2017

Đặt \(a=\sqrt{2-x^2};b=\sqrt{2-\frac{1}{x^2}};c=x+\frac{1}{x}\)

xet x<0 vt < 2 căn 2<3, vt >4=>loại=>x>0=>c>=2;

ta có a+b=4-c;

a^2+b^2=4-x^2-1/x^2=6-c^2;

\(=>\hept{\begin{cases}2a+2b=8-2c\left(2\right)\\a^2+b^2=6-c^2\left(1\right)\end{cases}}\)

trừ 1 cho 2=>a^2-2a+b^2-2b=-c^2-2-2c=>a^2-2b+1+b^2-2b+1=-c^2+2c-1+1

=>\(\left(a-1\right)^2+\left(b-1\right)^2=-\left(c-1\right)^2+1\)

\(< =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=1\)

ta lại có (a-1)^2>=0;(b-1)^2>=0;(c-1)^2>=(2-1)^2=1=>Vế trái>=1=Vế phải, dấu bằng xảy ra<=>

\(\hept{\begin{cases}a=1\\b=1\\c=2\end{cases}< =>x=1}\)

26 tháng 9 2017

Bạn tham khảo nhé:Điều kiện bạn tự tìm nhé

pt\(\Leftrightarrow\sqrt{2-x^2}+x-2+\sqrt{2-\frac{1}{x^2}}+\frac{1}{x}-2=0\)

\(\Leftrightarrow\frac{2-x^2-\left(x-2\right)^2}{\sqrt{2-x^2}-x+2}+\frac{2-\frac{1}{x^2}-\left(\frac{1}{x}-2\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)

\(\Leftrightarrow\frac{-2\left(x^2-2x+1\right)}{\sqrt{2-x^2}-x+2}+\frac{-2\left(\frac{1}{x^2}-\frac{2}{x}+1\right)}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2-x^2}-x+2}+\frac{\left(\frac{1}{x}-1\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{2-x^2}-x+2}+\frac{\frac{1}{x^2}}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\Leftrightarrow x=1\left(N\right)\\\frac{1}{\sqrt{2-x^2}-x+2}+\frac{1}{x\sqrt{2x^2-1}-x+2x^2}=0\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x\sqrt{2x^2-1}-x+2x^2+\sqrt{2-x^2}-x+2=0\)

Nhân 2 vào ta có:

\(\Leftrightarrow2x\sqrt{2x^2-1}-4x+4x^2+4+2\sqrt{2-x^2}=0\)

\(\Leftrightarrow\left(x+\sqrt{2x^2-1}\right)^2+\left(\sqrt{2-x^2}+1\right)^2+2\left(x-1\right)^2=0\left(VN\right)\)

Vậy phương trình có 1 nghiệm duy nhất là \(x=1\)