Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\frac{y^2}{3}=x^2+\frac{y^2}{-5}\)nếu bạn chép sai đề => kq sài vô lý
sua de lam tiep
\(\left(xy\right)^{10}=1024=2^{10}=>xy=2=>\left(xy\right)^2=4\)
\(\frac{x^2-y^2}{3}=\frac{x^2+y^2}{-5}=\frac{2x^2}{-2}=-x^2\)
\(\Leftrightarrow\frac{x^2-y^2}{3}=-x^2=>4x^2-y^2=0\)\(\Leftrightarrow4x^2=y^2\Leftrightarrow4x^2.y^2=y^2.y^2=>y^4=4.4=16=2^4=>y=!2!\)
KL:
y=!2!
x=!1!
(x,y)=(-1,-2); (1,2)
Đặt x/3=y/2=k
=>x=3k; y=2k
Ta có: 2/x+5/y=32
\(\Leftrightarrow\dfrac{2}{3k}+\dfrac{5}{2k}=32\)
\(\Leftrightarrow\dfrac{4}{6k}+\dfrac{15}{6k}=32\)
=>6k=19/32
=>k=19/192
=>x=57/192; y=38/192=19/96
Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)
=>\(x_1=-16\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)
\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)
Do đó: \(x_2=3;y_2=-2\)
Thịnh ơi hình như sai rồi
\(\dfrac{5}{x}-\dfrac{2}{y}=\dfrac{3}{2}\)
=>\(\dfrac{5x-2y}{xy}=\dfrac{3}{2}\)
=>2(5x-2y)=3xy
=>10x-4y-3xy=0
=>10x-3xy-4y=0
=>x(10-3y)-4y=0
=>\(-3x\left(y-\dfrac{10}{3}\right)-4y+\dfrac{40}{3}=0\)
=>\(-3x\left(y-\dfrac{10}{3}\right)-4\left(y-\dfrac{10}{3}\right)=0\)
=>\(\left(-3x-4\right)\left(y-\dfrac{10}{3}\right)=0\)
=>\(\left\{{}\begin{matrix}-3x-4=0\\y-\dfrac{10}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=\dfrac{10}{3}\end{matrix}\right.\)