Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left(x-1\right)^4-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^4-1\right]=0\)
\(\Rightarrow\left(x-1\right)^{x+2}=0\text{ hoặc }\left(x-1\right)^4-1=0\)
\(\Rightarrow x-1=0\text{ hoặc }\left(x-1\right)^4=1\)
\(\Rightarrow x=1\text{ hoặc }x=2\text{ hoặc }x=0\)
- Do (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)
2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}
3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x2 - 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên phair cos thừa số be hơn 0.
=> 0 < x2 < 11
Từ 3 điều trên ==> x2 = 9 => x = 3
(x-1)x+2=(x-1)x+6 <=> (x-1)x+2-(x-1)x+6=0 <=> (x-1)x+2[1-(x-1)4]=0 <=>(x-1)x+2[1-(x-1)2][1+(x-1)2]=0
<=>(x-1)x+2(1-x+1)(1+x-1)[1+(x-1)2]=0<=>(x-1)x+2(2-x)x[1+(x-1)2]=0
Do \(\left(x-1\right)^2\ge0\Rightarrow1+\left(x-1\right)^2\ge1>0\)
<=>(x-1)x+2=0 hoặc 2-x=0 hoặc x=0
- (x-1)x+2=0 =>x-1=0 =>x=1
- 2-x=0 => x=2
Vậy x=1 hoặc x=2 hoặc x=0
với x-1 =0\(\Rightarrow\)x=1 thì 0\(^{x+2}\)= 0\(^{x+6}\)\(\Rightarrow\)0=0
với x-1\(\ne\)0 thì 1= (x-1)\(^4\)\(\Rightarrow\)x-1 =1 hoặc x-1= -1\(\Rightarrow\)x=2 hoặc x=0
vậy x=1; x=2;x=0
Với x^2<=1
=>(x^2-1)<=0,(x^2-4)<=0
(x^2-7)<=0,(x^2-10<=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
+)với x^2>=10
=>(x^2-1)>=0,x^2-4>=0
x^2-7>=0,x^2-10>=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
Vậy 1<x^2<10
vì x nguyên nên chỉ có 4 trường hợp:
x=2,x=3,x=-2,x=-3
Thử vào thì ra x=3 hoặc x=-3.
Ta có:x2-2y2=1
<=>x2-1=2y2
<=>(x-1)(x+1)=2y2=y.2y
TH1:(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2=>y2=3+1=4=>y=2
TH2:(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 (*)
và x+1=2y
ta có x+1=2y, kết hợp với (*)
=>(y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
Khi đó x=2+1=3
Vậy (x;y)=(3;2)
a, (x-3)2 - 2(x-3) + 1 < 1 <=> (x-3-1)2 <1 <=> (x-4)2 <1 <=> -1< x-4<1 <=> 3<x<5 mặt khác x thuộc z => x= 4
b,\(\frac{x+3}{2x-1}\)< 1 đk x khác 1/2
<=> \(\frac{x+3}{2x-1}\)- 1 <0 <=> \(\frac{x+3-\left(2x-1\right)}{2x-1}\)< 0 <=> \(\frac{2-x}{2x-1}\)< 0 => 2 TH xảy ra\(\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\end{cases}}\)
TH1 \(\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\)<=> 1/2 <x<2 mà x thuộc z => x= 1
TH2 \(\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\)<=>\(\hept{\begin{cases}x>\frac{1}{2}\\x>2\end{cases}}\)<=> x>2 và x thuộc z
c, x(x+3) >x2(x+3) <=> x(x+3)- x2(x+3) > 0 <=> x(x+3)(1-x)<0 mà x thuộc z
x | -3 | 0 | 1 | ||||
x+3 | - | 0 | + | + | |||
1-x | + | + | 0 | - | |||
x(x+3)(1-x) | + (loại) | 0 (loại) | - (TM) | 0 (loại) | 0 (loại) | - (TM) |
=> \(\orbr{\begin{cases}-3< x< 0\\x>1\end{cases}}\)vì x thuộc z
TH1 -3<x<0 => x=-1 hoặc x= -2 vì x thuộc z
TH2 x>1 và x thuộc z
d, x< x2 <=> x - x2 < 0 <=> x(1-x) < 0 <=> 2 TH xảy ra
TH1 \(\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\)<=> không xảy ra
TH2 \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)<=> 0 <x<1
ĐKXĐ: x<>-1
\(C=\dfrac{x^2-1}{x+1}=\dfrac{\left(x-1\right)\cdot\left(x+1\right)}{x+1}=x-1\)
=>Khi \(x\in Z\backslash\left\{-1\right\}\) thì C là số nguyên