Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)
- \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
- \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
vậy x=2/3 hoặc x=17/6
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
Giải \(\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\)
\(\Leftrightarrow5.2\left(x+3\right)=7\left(4x-3\right)\)
\(\Leftrightarrow10x+30=28x-21\)
\(\Leftrightarrow10x-28x=-21-30\)
\(\Leftrightarrow-18x=-51\)
\(\Leftrightarrow x=\frac{17}{6}\)
\(\frac{13}{\left(2x+7\right)\left(x-3\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\left(1\right)\)
\(ĐKXĐ:x\ne\frac{-7}{2};x\ne\pm3\)
\(MTC:\left(2x+7\right)\left(x-3\right)\left(x+3\right)=\left(2x+7\right)\left(x^2-9\right)\)
\(\left(1\right)\Leftrightarrow\frac{13\left(x+3\right)}{\left(2x+7\right)\left(x^2-9\right)}+\frac{\left(x^2-9\right)}{\left(2x+7\right)\left(x^2-9\right)}=\frac{6\left(2x+7\right)}{\left(2x+7\right)\left(x^2-9\right)}\)
\(\Rightarrow13\left(x+3\right)+\left(x^2-9\right)=6\left(2x+7\right)\)
\(\Leftrightarrow13x+39+x^2-9=12x+42\)
\(\Leftrightarrow13x+x^2+30=12x+42\)
\(\Leftrightarrow x^2+13x-12x+30-42=0\)
\(\Leftrightarrow x^2+x-12\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(4x-12\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
Hoặc \(x-3=0\Leftrightarrow x=3\left(L\right)\)
Hoặc \(x+4=0\Leftrightarrow x=-4\left(N\right)\)
Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)
Giải :
\(\text{ĐKXĐ :}\:x\ne-\frac{7}{2}\:\text{và}\:x\ne\pm3 \). Mẫu chung là \(\left(2x+7\right)\left(x+3\right)\left(x-3\right)\).
Khử mẫu ta được :
\(13\left(x+3\right)+\left(x+3\right)\left(x-3\right)=6\left(2x+7\right)\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2+4x-3x-12=0\)
\(\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow(x+4)(x-3)=0\)
\(\Leftrightarrow x=-4\:\text{hoặc}\:x=3\)
Trong 2 giá trị tìm được, chỉ có \(x=-4\) là thoả mãn ĐKXĐ. Vậy phương trình có 1 nghiệm duy nhất \(x=-4\).
Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)
Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)
Ta có:
\(u^2+6v=7uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)
Xét nốt nha!
Câu b là phân tích các kiểu ra dạng như thế này nhé !
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x}{2\left(x+1\right)\left(x-3\right)}+\frac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x+1\right)\left(x-3\right)}=\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2x}{2\left(x+1\right)}=0\)
=> 2x=0
=> x=0(tmđk)
Vậy x=0 là nghiệm của phương trình
( x - 2 ).( x + 3 )2 - ( x - 2 ).(x - 1)2 = 0
(=) ( x - 2 ).[ ( x + 3 )2 - ( x - 1 )2 ] = 0
(=) ( x - 2).[ x2 + 6x + 9 - x2 + 2x - 1] = 0
(=) ( x - 2 ) .( 8x + 8 ) = 0
(=) \(\orbr{\begin{cases}x-2=0\\8x+8=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy phương trình có nghiệm là : x = 2 , -1
b) 9x2 - 6x + 1 = 4x2
(=) 9x2 - 6x + 1 - 4x2 = 0
(=) 5x2 - 6x + 1 = 0
(=) 5x2 - 5x - x + 1 = 0
(=) 5x.( x - 1 ) - (x - 1) = 0
(=) ( x - 1 ).( 5x - 1) = 0
(=)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , \(\frac{1}{5}\)
c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= 1
(=) \(\frac{3\left(x-3\right)}{3}\)\(-\)\(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= \(\frac{3}{3}\)
(=) 3.( x - 3) - ( x - 3 ).( 2x +1 ) = 3
(=) 3x - 9 - 2x2 +5x +3 -3 = 0
(=) -2x2 +8x -9 = 0 (loại )
Vậy phương trình vô nghiệm
d) x2 + 6x - 7 =0
(=) x2 +7x - x - 7 = 0
(=) x.( x + 7 ) - ( x + 7 ) = 0
(=) ( x - 1 ) .( x+7 ) = 0
(=) \(\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , -7
nhìn căng nhể :))
a) ( x - 1 )( x - 3 )( x + 5 )( x + 7 ) - 297 = 0
<=> [ ( x - 1 )( x + 5 ) ][ ( x - 3 )( x + 7 ) ] - 297 = 0
<=> ( x2 + 4x - 5 )( x2 + 4x - 21 ) - 297 = 0
Đặt t = x2 + 4x - 5
pt <=> t( t - 16 ) - 297 = 0
<=> t2 - 16t - 297 = 0
<=> t2 - 27t + 11t - 297 = 0
<=> t( t - 27 ) + 11( t - 27 ) = 0
<=> ( t - 27 )( t + 11 ) = 0
<=> ( x2 + 4x - 5 - 27 )( x2 + 4x - 5 + 11 ) = 0
<=> ( x2 + 4x - 32 )( x2 + 4x + 6 ) = 0
<=> ( x2 - 4x + 8x - 32 )( x2 + 4x + 6 ) = 0
<=> [ x( x - 4 ) + 8( x - 4 ) ]( x2 + 4x + 6 ) = 0
<=> ( x - 4 )( x + 8 )( x2 + 4x + 6 ) = 0
Đến đây dễ rồi :)
ĐKXĐ : \(x\ne2,x\ne4\)
Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)
Đặt \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)
Khi đó pt (2) trở thành :
\(a^2+ab-12b=0\)
\(\Leftrightarrow a^2-3ab+4ab-12b=0\)
\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)
Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne\pm1\)
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)
\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)
\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)
\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)
\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)
\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
\(\frac{7-x}{2}+\frac{2}{3}\left(x-7\right)\left(x-3\right)=0\)
=> \(\left(x-7\right)\left(-\frac{1}{2}+\frac{2}{3}\left(x-3\right)\right)=0\)
=> \(\left(x-7\right)\left(-\frac{1}{2}+\frac{2}{3}x-2\right)=0\)
=> \(\left(x-7\right)\left(\frac{2}{3}x-\frac{5}{2}\right)=0\)
=> \(\orbr{\begin{cases}x-7=0\\\frac{2}{3}x-\frac{5}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=\frac{15}{4}\end{cases}}\)