\(\sqrt{x+5-2\sqrt{x+4}}=3\sqrt{x+4}-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.

3 tháng 5 2017

c) Đkxđ \(\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
d) Đkxđ: \(-x-1\ge0\Leftrightarrow-x\ge1\) \(\Leftrightarrow x\le-1\).
Pt\(\Leftrightarrow x^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy x = -2 là nghiệm của phương trình.

3 tháng 5 2017

a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.

3 tháng 5 2017

b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)

4 tháng 12 2021

Answer:

b) \(2\sqrt{x+3}=9x^2-x-4\)

ĐK: x\(x\ge-3\) phương trình tương đương:

Ta có: \(2\sqrt{x+3}=9x^2-x-4\)

\(\Leftrightarrow x+4+2\sqrt{x+3}=9x^2\)

\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)

\(\Leftrightarrow\left(1+\sqrt{3+x}\right)^2=9x^2\)

\(\left(1+\sqrt{3+x}\right)^2=9x^2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}+1=3x\\\sqrt{x+3}+1=-3x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5-\sqrt{97}}{18}\end{cases}}\)

9 tháng 5 2016

Phương trình ban đầu \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}=2^{\frac{3}{2}}.2^{-3}\)

                                 \(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}=2^{\frac{3}{2}-3}\)

                                 \(\Leftrightarrow x=\frac{62}{7}\) là nghiệm của phương trình

25 tháng 2 2017

1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)

\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)

17 tháng 6 2019

3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)

\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)

\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)

\(\Rightarrow x=6\)

8 tháng 10 2020

đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)

Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)

\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)

\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)

\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)

4 tháng 12 2019

\( 1)\sqrt[3]{{12 - x}} + \sqrt[3]{{14 + x}} = 2\\ \Leftrightarrow 12 - x + 3\sqrt[3]{{{{\left( {12 - x} \right)}^2}.\left( {14 + x} \right)}} + 3\sqrt[3]{{\left( {12 - x} \right){{\left( {14 + x} \right)}^2}}} + 14 + x = 8\\ \Leftrightarrow 3\sqrt[3]{{\left( {12 - x} \right)\left( {14 + x} \right)}}\left( {\sqrt[3]{{12 - x}} + \sqrt[3]{{14 + x}}} \right) = - 18\\ \Leftrightarrow 3\sqrt[3]{{\left( {12 - x} \right)\left( {14 + x} \right)}}.2 = - 18\\ \Leftrightarrow \sqrt[3]{{\left( {12 - x} \right)\left( {14 + x} \right)}} = - 3\\ \Leftrightarrow \left( {12 - x} \right)\left( {14 + x} \right) = {\left( { - 3} \right)^3}\\ \Leftrightarrow 168 - 2x - {x^2} = - 27\\ \Leftrightarrow {x^2} + 2x - 195 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = - 15\\ x = 13 \end{array} \right. \)

Vậy...

4 tháng 12 2019

1.

Đặt\(\left\{{}\begin{matrix}u=\sqrt[3]{12-x}\\v=\sqrt[3]{14+x}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3=12-x\\v^3=14+x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u^3+v^3=26\\u+v=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(u+v\right)\left(u^2-uv+v^2\right)=26\\u+v=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2-uv+v^2=13\\v=2-u\end{matrix}\right.\)

\(\Rightarrow u^2-u\left(2-u\right)+\left(2-u\right)^2=13\) \(\Leftrightarrow3u^2-6u-9=0\) \(\Rightarrow\left[{}\begin{matrix}u=3\Rightarrow v=-1\\u=-1\Rightarrow v=3\end{matrix}\right.\) Tìm x.

2.ĐK: \(-40\le x\le57\)

Đặt \(\left\{{}\begin{matrix}\sqrt[4]{57-x}=u\\\sqrt[4]{x+40}=v\end{matrix}\right.\) \(\left(u,v\ge0\right)\) \(\Rightarrow\left\{{}\begin{matrix}u^4=57-x\\v^4=x+40\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=5\\u^4+v^4=97\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=25-2uv\\\left(u^2+v^2\right)^2-2u^2v^2=97\end{matrix}\right.\) \(\Rightarrow\left(25-2uv\right)^2-2u^2v^2=97\)

\(\Leftrightarrow2u^2v^2-100uv+528=0\) \(\Rightarrow\left[{}\begin{matrix}uv=44\\uv=6\end{matrix}\right.\) Kết hợp \(u+v=5\) giải 2 trường hợp.

3.

ĐK: \(-\sqrt{17}\le x\le\sqrt{17}\)

Đặt \(x+\sqrt{17-x^2}=t\) \(\Rightarrow\frac{t^2-17}{2}=x\sqrt{17-x^2}\)

\(PT\Leftrightarrow t+\frac{t^2-17}{2}=9\) \(\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\) Giải tiếp.