Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) điều kiện : \(x\ge3\)
ta có : \(\sqrt{x^2-9}-\sqrt{4x-12}\le0\) \(\Leftrightarrow\sqrt{x^2-9}\le\sqrt{4x-12}\)
\(\Leftrightarrow x^2-9\le4x-12\Leftrightarrow x^2-4x+3\le0\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1\le x\le3\\x\in\varnothing\end{matrix}\right.\) kết hợp với điều kiện \(\Rightarrow x=3\)
b) điều kiện \(x\ge1\)
ta có : \(\sqrt{x^2-1}-\sqrt{x-1}>0\) \(\Leftrightarrow\sqrt{x^2-1}>\sqrt{x-1}\)
\(\Leftrightarrow x^2-1>x-1\Leftrightarrow x^2-x< 0\Leftrightarrow x\left(x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\left(L\right)\end{matrix}\right.\) vậy \(x>1\)
c) điều kiện \(x\ge3\)
ta có : \(\sqrt{2x^2-12x+18}+\sqrt{x-3}>0\)
\(\Leftrightarrow\sqrt{2\left(x-3\right)^2}+\sqrt{x-3}>0\) \(\Rightarrow x\ne3\) kết hợp với điều kiện \(\Rightarrow x>3\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)
Chúc bạn học tốt !!!
Mấy bạn giúp với, lần trước mình cũng đăng bài này nhưng cách giải không hay cho lắm
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.