\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

ĐKXĐ:\(x\ge\frac{1}{2}\)

Đặt \(\sqrt{x^2+2x}=a;\sqrt{2x-1}=b\left(a,b\ge0\right)\)

=> \(3x^2+4x+1=3a^2-b^2\)

Khi đó pt trở thành:

\(a+b=\sqrt{3a^2-b^2}\)

=>\(a^2+b^2+2ab=3a^2-b^2\)

<=>\(2a^2-2ab-2b^2=0\)

<=> \(\orbr{\begin{cases}a=\frac{1+\sqrt{5}}{2}b\\a=\frac{1-\sqrt{5}}{2}b\left(loại\right)\end{cases}}\)

=> \(\sqrt{x^2+2x}=\frac{1+\sqrt{5}}{2}\sqrt{2x-1}\)

=>\(x^2+2x=\left(2x-1\right).\frac{3+\sqrt{5}}{2}\)

<=>\(x=\frac{1+\sqrt{5}}{2}\)(thỏa mãn ĐKXĐ)

Vậy nghiệm của pt là \(x=\frac{1+\sqrt{5}}{2}\)

4 tháng 6 2019

Bình phương cả 2 vế rồi đặt ẩn phụ là ra

5 tháng 6 2019

\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))

\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)

\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)

\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)

Đặt \(x^2+1=t\)

pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)

\(\Leftrightarrow2xt+3t-4x-3=t^2\)

\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)

\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)

\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)

TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)

\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)

\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)

\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)

Giải ra rồi thay TH2

19 tháng 6 2019

ĐKXĐ \(x\ge\frac{1}{2}\)

Đặt \(\sqrt{x^2+2x}=a,\sqrt{2x-1}=b\left(a,b\ge0\right)\)

=> \(3a^2-b^2=3x^2+4x+1\)

Khi đó PT <=> 

\(a+b=\sqrt{3a^2-b^2}\)

=> \(a^2+2ab+b^2=3a^2-b^2\)

=> \(a^2-ab-b^2=0\)

=> \(a=\frac{1+\sqrt{5}}{2}.b\)

=> \(x^2+2x=\frac{6+2\sqrt{5}}{4}.\left(2x-1\right)\)

=> \(x=\frac{1+\sqrt{5}}{2}\)thỏa mãn ĐKXĐ

Vậy \(x=\frac{1+\sqrt{5}}{2}\)

20 tháng 5 2018

Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia

25 tháng 7 2018

\(2x^2+2x+1=\sqrt{4x+1}\)

\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)

\(4x^4+8x^3+8x^2+4x+1=4x+1\)

\(\Leftrightarrow4x^4+8x^3+8x^2=0\)

\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=0\)

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha

7 tháng 8 2017

giúp mk bài này với

7 tháng 8 2017

câu 2 có thể là am-gm 2016 số