Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.
Điều kiện x ≤ 0. Bình phương tiếp ta được:
x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0
=> x1 =2 – (nhận), x2 = 2 + (nhận).
d) ĐK: x ≥ .
=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
*Với x\(\ge\)2 PT trở thành: x.(x-2)+(2x+5)=8
<=>x2-2x+2x+5=8
<=>x2=3
<=>\(x=\sqrt{3}\left(loại\right)\text{ hoặc }x=-\sqrt{3}\left(loại\right)\)
*Với \(-\frac{5}{2}\le x<2\) PT trở thành: x.(2-x)+(2x+5)=8
<=>2x-x2+2x+5=8
<=>-x2+4x-3=0
<=>-x2+3x+x-3=0
<=>-x.(x-3)+(x-3)=0
<=>(x-3)(1-x)=0
<=>x=3 (loại) hoặc x=1
*Với x<-5/2 PT trở thành: x.(2-x)-(2x+5)=8
<=>2x-x2-2x-5=8
<=>x2=-13 (vô lí)
Vậy S={1}
\(\sqrt{x+1}=5-\sqrt{2x+3}\)
ĐK: x\(\ge\)1
\(\sqrt{x+1}=5-\sqrt{2x+3}\Leftrightarrow\sqrt{2x+3}=5-\sqrt{x+1}\)
\(\Leftrightarrow2x+3=25-2\sqrt{x+1}+x+1\Leftrightarrow x-23=-2\sqrt{x+1}\)
\(\Leftrightarrow x^2-46x+529=4x+4\Leftrightarrow x^2-50+525\)
\(\Delta=400\Rightarrow\sqrt{\Delta}=20\)
\(\Delta>0,PT\text{ có 2 nghiệm pb: }x_1=35;x_2=15\)
Vậy S={15;35}
đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)
Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)
\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)
\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)
đa phần mình sử dụng phương pháp liên hợp nha bạn
\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:
\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)
d. điều kiện: \(x\le-4\cup x\ge0\), pt:
\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)
e. điều kiện:x thuộc R
\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)
(1) mình không biết có vô nghiệm không nữa và cũng thua luôn
f. điều kiện: \(x\ge-2\)
bài này giải cách hơi khác một chút
đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)
pt:
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)
mà \(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)
=> (1) = (2)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)
TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)
g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)
pt:
\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)
\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)
(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)
a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x=0\)
b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)
\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )
\(\Leftrightarrow2x^2-5x+3=0\)
\(\Delta=b^2-4ac\)
\(\Delta=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{2}\)
c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)
\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )
\(\Leftrightarrow x^2-4x-2=x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)
Vậy \(x=5\)
d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)
\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )
\(\Leftrightarrow2x^2-x-3=2x-3\)
\(\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
Lời giải:
ĐK: \(x\in\mathbb{R}\)
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
\(\Leftrightarrow \sqrt{x^2+2x+10}=\sqrt{29}-\sqrt{x^2-2x+5}\)
Bình phương 2 vế:
\(x^2+2x+10=29+x^2-2x+5-2\sqrt{29(x^2-2x+5)}\)
\(\Leftrightarrow 4x-24=-2\sqrt{29(x^2-2x+5)}\)
\(\Leftrightarrow 12-2x=\sqrt{29(x^2-2x+5)}\)
\(\Rightarrow \left\{\begin{matrix} 12-2x\geq 0\\ (12-2x)^2=29(x^2-2x+5)\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 6\\ 4x^2+144-48x=29x^2-58x+145\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 6\\ 25x^2-10x+1=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 6\\ (5x-1)^2=0\end{matrix}\right.\Rightarrow x=\frac{1}{5}\)
(thỏa mãn)
Vậy.....