\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x-27\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Câu 1:

ĐK: \(4\leq x\leq 6\)

Ta thấy biểu thức vế trái luôn không âm theo tính chất căn bậc 2

Vế phải: \(x^2-10x-27=x(x-10)-27< 0-27< 0\) với mọi \(4\leq x\leq 6\), tức là biểu thức vế phải luôn âm

Do đó pt vô nghiệm

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Câu 2:

\(x\geq -3; y\geq 3; z\geq 3\)

Ta có: \(\sqrt{x+3}+\sqrt{y-3}+\sqrt{z-3}=\frac{1}{2}(x+y+z)\)

\(\Leftrightarrow 2\sqrt{x+3}+2\sqrt{y-3}+2\sqrt{z-3}=x+y+z\)

\(\Leftrightarrow (x+3-2\sqrt{x+3}+1)+(y-3-2\sqrt{y-3}+1)+(z-3-2\sqrt{z-3}+1)=0\)

\(\Leftrightarrow (\sqrt{x+3}-1)^2+(\sqrt{y-3}-1)^2+(\sqrt{z-3}-1)^2=0\)

\((\sqrt{x+3}-1)^2; (\sqrt{y-3}-1)^2; (\sqrt{z-3}-1)^2\) đều không âm nên để tổng của chúng bằng $0$ thì:

\((\sqrt{x+3}-1)^2=(\sqrt{y-3}-1)^2=(\sqrt{z-3}-1)^2=0\)

\(\Rightarrow x=-2; y=z=4\)

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

3 tháng 7 2018

\(1.x^2-4x-2\sqrt{2x-5}+5=0\left(x>=\dfrac{5}{2}\right)\)

\(\text{⇔}2x-5-2\sqrt{2x-5}+1+x^2-6x+9=0\)

\(\text{⇔}\left(\sqrt{2x-5}-1\right)^2+\left(x-3\right)^2=0\)

\(\text{⇔}\sqrt{2x-5}-1=0\) hoặc \(x-3=0\)

\(\text{⇔}x=3\left(TM\right)\)

KL...........

\(2.x+y+4=2\sqrt{x}+4\sqrt{y-1}\)

\(\text{⇔}x-2\sqrt{x}+1+y-1-4\sqrt{y-1}+4=0\)

\(\text{⇔}\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2=0\)

\(\text{⇔}x=1;y=5\)

KL..........

\(3.\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-5}=\dfrac{1}{2}\left(x+y+z-7\right)\)

\(\text{⇔}2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-5}=x+y+z-7\)

\(\text{⇔}x-2-2\sqrt{x-2}+1+y-3-2\sqrt{y-3}+1+z-5-2\sqrt{z-5}+1=0\)

\(\text{⇔}\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-5}-1\right)^2=0\)

\(\text{⇔}x=1;y=4;z=6\)

KL...........

\(d.Tuong-tự-nhé-bn\)

17 tháng 11 2016

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

17 tháng 11 2016

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............