Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}=3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|x-1\right|+\left|-\left(x+2\right)\right|=\left|x-1\right|+\left|-x-2\right|\)
\(\ge\left|x-1+\left(-x\right)-2\right|=3=VP\)
Đẳng thức xảy ra khi \(x=1\)
Bài 2:
a)\(\sqrt{\left(1-x\right)^2}=x-1\)
\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6
b)\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)
\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
Pt to dài trong ngoặc >0
Suy râ x=0;x=-3
câu 1;2a dễ,tự làm đi
câu 2b:
\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)
\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)
<=>3x-x2=0
1. Xét điều kiện:
\(\hept{\begin{cases}x-1\ge0\\x-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1\ge0\left(1\right)\\x\left(1-x\right)\ge0\left(2\right)\end{cases}}\)
(1) <=> x \(\ge\)1 > 0 thay vào (2) ta có: 1 - x \(\ge\)0 <=> x \(\le\)1
Do đó chỉ có thể xảy ra trường hợp x = 1
=> ĐK : x = 1
Với x = 1 thử vào phương trình ta có: 0 - 0 + 2 = 2 ( thỏa mãn)
Vậy x = 1 là nghiệm của phương trình.
bài 2: ĐK:\(0\le x\le1\)
+) Với điều kiện: A,B không âm
\(\left(A+B\right)^2\ge A^2+B^2\)(1)
<=> \(A^2+B^2+2AB\ge A^2+B^2\)
<=> \(2AB\ge0\)luôn đúng
Dấu "=" xảy ra <=> A = 0 hoặc B = 0
Áp dụng với \(\left(\sqrt{1-x}+\sqrt{x}\right)^2\ge1-x+x=1\)
=> \(\sqrt{1-x}+\sqrt{x}\ge1\)
Dấu "=" xảy ra <=> x = 0 hoặc x = 1
+) Với điều kiện C, D không âm
\(\left(C+D\right)^2\ge C^2-D^2\)(2)
Thật vậy: (2)<=> \(2CD+D^2\ge-D^2\)
<=> \(D\left(C+D\right)\ge0\)luôn đúng
Dấu "=" xayra <=> D = 0 hoặc C + D = 0
Áp dụng" \(\left(\sqrt{1+x}+\sqrt{x}\right)^2\ge1+x-x=1\)
=> \(\sqrt{1+x}+\sqrt{x}\ge1\)
Dấu "=" xảy ra <=> x = 0
Vậy khi đó:
\(P=\sqrt{1-x}+\sqrt{1+x}+\sqrt{4x}\)
\(=\left(\sqrt{1-x}+\sqrt{x}\right)+\left(\sqrt{1+x}+\sqrt{x}\right)\)
\(\ge1+1=2\)
Dấu "=" xảy ra <=> x = 0
\(\Leftrightarrow\sqrt{x-1}-1+\sqrt{x+2}-2=\sqrt{x+34}-6+3-\sqrt{x+7}\)
ĐK: x>=1
\(pt\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(\sqrt{x+2}-2\right)+\left(\sqrt{x+7}-3\right)-\left(\sqrt{x+34}-6\right)=0\)
\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x+2}+2}+\frac{x-2}{\sqrt{x+7}+3}-\frac{x-2}{\sqrt{x+34}+6}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{x+7}+3}-\frac{1}{\sqrt{x+34}+6}\right)=0\left(1\right)\)
Vì trong ngoặc lớn hơn 0 mọi x>=1
phương trình (1) <=> x-2=0
<=>x=2 ( thỏa mãn)