K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhẩm nghiệm bằng 2 nên bình phương luôn:>>

ĐK \(x\ge1\)

\(PT\Leftrightarrow x-1=x^4-2x^3-5x^2+6x+9.\)

\(\Leftrightarrow x^4-2x^3-5x^2+5x+10=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-5x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x^3-5x-5=0\left(1\right)\end{cases}}\)

Giải (1)

Đặt x=y3 (làm cho nhanh)

Thay vào ta được

\(\left(y^3-\frac{5}{2}\right)^2=\frac{45}{4}\)

Đến đây tự giải 

Học tốt!!!!!!!!!!

2 tháng 11 2019

ĐKXĐ:\(x\ge1\)

PT\(\Leftrightarrow\left(x-2\right)\left[\left(x+1\right)+\frac{1}{\sqrt{x-1}+1}\right]=0\)

Cái ngoặc to vô nghiệm vậy x = 2. Done!

Đặt căn x=a; căn 1-x=b

Theo đề, ta có: a+b=1+2/3ab

=>3a+3b=3+2ab

=>3a+3b-2ab=3

=>a(3-2b)+3b-4,5=-1,5

=>-a(2b-3)+3(b-1,5)=-1,5

=>-2a(b-1,5)+3(b-1,5)=-1,5

=>(-2a+3)(b-1,5)=-1,5

=>(2a-3)(b-1,5)=1,5

=>(2a-3)(2b-3)=3

=>(2a-3;2b-3) thuộc {(1;3); (3;1);(-1;-3); (-3;-1)}

=>(a,b) thuộc {(2;3); (3;2); (1;0); (0;1)}

TH1: a=2; b=3

=>căn x=2 và căn 1-x=3

=>x=4 và 1-x=9

=>Loại

TH2: a=3 và b=2

=>căn x=3 và căn 1-x=2

=>x=9 và 1-x=4(loại)

TH3: a=1 và b=0

=>x=1 và 1-x=0

=>x=1

TH4: a=0 và b=1

=>x=0 và 1-x=1

=>x=0

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Bình phương hai vế ta được:

\(\begin{array}{l}3{x^2} - 4x + 1 = {x^2} + x - 1\\ \Leftrightarrow 2{x^2} - 5x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay lần lượt 2 giá trị \(x = 2\) và \(x = \frac{1}{2}\) vào \({x^2} + x - 1 \ge 0\) ta thấy chỉ có \(x = 2\) thỏa mãn bất phương trình.

Vậy nghiệm của phương trình đã cho là \(x = 2\).

6 tháng 1 2021

ĐK: \(x\ge1\)

\(pt\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}-\sqrt{x-1}-6\sqrt{x+2}+3=0\)

\(\Leftrightarrow\left(2\sqrt{x+2}-1\right)\left(\sqrt{x-1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+2}=1\\\sqrt{x-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+2\right)=1\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}\left(l\right)\\x=10\left(tm\right)\end{matrix}\right.\)

Vậy ...

NV
8 tháng 1 2021

Xét \(f\left(x;y;z\right)=\left(3x+4y+5z\right)^2-44\left(xy+yz+zx\right)\)

\(=\left(y+2z+3\right)^2-44yz-44\left(y+z\right)\left(1-y-z\right)\)

\(=45y^2+2y\left(24z-19\right)+48z^2-32z+9\)

\(\Delta_y'=\left(24z-9\right)^2-45\left(48z^2-32z+9\right)=-44\left(6z-1\right)^2\le0\)

\(\Rightarrow f\left(x;y;z\right)\ge0\) 

20 tháng 7 2023

\(\sqrt[]{x+3}+\sqrt[]{x-1}=2\left(x\ge1\right)\)

\(\Leftrightarrow x+3+x-1+2\sqrt[]{\left(x+3\right)\left(x-1\right)}=4\)

\(\Leftrightarrow2x+2+2\sqrt[]{\left(x+3\right)\left(x-1\right)}=4\)

\(\Leftrightarrow2\sqrt[]{\left(x+3\right)\left(x-1\right)}=4-2\left(x+1\right)\)

\(\Leftrightarrow\sqrt[]{\left(x+3\right)\left(x-1\right)}=2-\left(x+1\right)\)

\(\Leftrightarrow\sqrt[]{\left(x+3\right)\left(x-1\right)}=1-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\\Leftrightarrow\left(x+3\right)\left(x-1\right)=\left(1-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\Leftrightarrow x^2+2x-3=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\Leftrightarrow4x=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\Leftrightarrow x=1\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Điều kiện xác định: \(x\ge1\)

\(\sqrt{x+3}+\sqrt{x-1}=2\\ \Leftrightarrow x+3+x-1+2\sqrt{\left(x+3\right)\left(x-1\right)}=4\)

\(\Leftrightarrow x+1+\sqrt{x^2+2x-3}=2\\\Leftrightarrow\sqrt{x^2+2x-3}=1-x \)

Để phương trình thỏa mãn thì x\(\le1\)mà \(x\le1\)

\(\Rightarrow x=1\)

Thử lại, ta được: \(\sqrt{1+3}+\sqrt{1-1}=2\left(tm\right)\)

Vậy x=1

29 tháng 11 2021

\(\dfrac{-17}{15}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {2{x^2} + x + 3}  = 1 - x\)

Bình phương hai vế của phương trình ta được:

\(2{x^2} + x + 3 = 1 - 2x + {x^2}\)

Sau khi thu gọn ta được \({x^2} + 3x + 2 = 0\). Từ đó x=-1 hoặc x=-2

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy cả hai giá trị \(x =  - 1;x =  - 2\) đều thỏa mãn

Vậy phương trình có tập nghiệm \(S = \left\{ { - 1; - 2} \right\}\)

b) \(\sqrt {3{x^2} - 13x + 14}  = x - 3\)

Bình phương hai vế của phương trình ta được:
\(3{x^2} - 13x + 14 = {x^2} - 6x + 9\)

Sau khi thu gọn ta được \(2{x^2} - 7x + 5 = 0\). Từ đó \(x = 1\) hoặc \(x = \frac{5}{2}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy không có giá trị nào của x thỏa mãn

Vậy phương trình vô nghiệm.

13 tháng 3 2021

ĐKXĐ: \(x\le1\)

+) Xét \(x=0\) thỏa mãn.

+) Xét \(x\ne0\):

Nhân cả 2 vế của phương trình với \(\left(1+\sqrt{1-x}\right)\) ta được:

\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)

Đặt \(\sqrt{1-x}=a\left(a\ge0\right)\), khi đó \(2-x=a^2+1\)

\(pt\Leftrightarrow\sqrt[3]{a^2+1}=1+a\)

\(\Leftrightarrow a^2+1=\left(a+1\right)^3=a^3+3a^2+3a+1\)

\(\Leftrightarrow a^3+2a^2+3a=0\)

\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(C\right)\\\left(a+1\right)^2+2=0\left(L\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{1-x}=0\)

\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy tập nghiệm của phương trình là \(x=\left\{0;1\right\}\)

13 tháng 3 2021

Lại bị lỗi công thức :((

Nhân cả hai vế của phương trình với \(1+\sqrt{1-x}\) ta được:

\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)