\(\sqrt{\text{2x+1}}\) +\(\sqrt{\text{x+1}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

làm được

7 tháng 12 2016

làm đi tôi xem nhờ với

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)

Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)

nên dấu "=" <=> x = -1

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)

<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)

<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)

<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)

<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)

<=> -x4 + 3x+ 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)

<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2

<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8

<=> x = -1

=> x = -1

12 tháng 8 2017

đăng ít một thôi bạn

12 tháng 8 2017

Bỏ câu c,d đi ạ