Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
ĐKXĐ x>=1
Bình phương 2 vế , ta đc(câu này bn ko cần ghi đâu mik ghi cho rõ ràng tí thôi)
x + 3 + 2 √( x+3)(x-1) +x-1 =4
(=) 2√(x+3)(x-1) = 2-2x
(=)√(x2 - x + 3x - 1) = 1-x
ở đây phải có thêm điều kiện x <= 1 để lm tiếp
=> x2 + 2x - 3 = x2 -2x +1 ( mik đổi chõ luôn )
(=) 4x = 4
=> x=1 ( Tm ĐKXĐ ) cái này phải có nè ko mất điển như chơi
Vậy pt có nghiệm x=1
học tốt
Ta có pt
\(\Leftrightarrow\sqrt[3]{x-2}-1+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\dfrac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\dfrac{1}{\sqrt{x+1}+2}\right)=0\)
<=> x=3
Trần Hữu Ngọc Minh xem tôi làm có đúng ko?
Giải:
a, \(\sqrt{2}.x-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}.x=\sqrt{50}\Leftrightarrow\sqrt{2}.x=\sqrt{25.2}\)
\(\Leftrightarrow\sqrt{2}.x=\sqrt{25}.\sqrt{2}\Leftrightarrow\sqrt{2}.x=5\sqrt{2}\)
\(\Leftrightarrow x=5\)
c, \(\sqrt{3}.x^2-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{12}\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4.3}\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4}.\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}.x^2=2\sqrt{3}\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{5}}=\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{5}.\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{100}\)
\(\Leftrightarrow x=\pm10\)