Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
copy mà ko hiểu thì copy làm gì
#Lần sau copy nhớ ghi nguồn nếu tôn trọng công sức người khác
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)
\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)
Thấy: \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
ĐK: \(x< 5\)
Nhận xét: \(x=\frac{1}{3}\) nghiệm của phương trình
\(\frac{42}{5-x}\) đồng biến với x. x tăng thì 5-x giảm -> \(\frac{42}{5-x}\) tăng
\(\Rightarrow\sqrt{\frac{42}{5-x}}\) đồng biến với x
\(\Leftrightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x
VT đồng biến với x, VP là hằng số. Nếu Phương Trình nghiệm thì nghiệm duy nhất là:
\(\Rightarrow\)Phương Trình có nghiệm là \(\frac{1}{3}\)
Nhận xét : \(x=\frac{1}{3}\) là 1 nghiệm của phương trình
\(\sqrt{\frac{42}{5-x}}\) đồng biến với " x tăng thì 5 - c giảm -> \(\sqrt{\frac{42}{5-x}}\) tăng
Tương đương \(\Rightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x
VT đồng biến với x, VP là hằng số. Nếu phương trình có nghiệm thì kết quả duy nhất là : \(\frac{1}{3}\)
Vậy kết quả của Phương trình có nghiệm là \(\frac{1}{3}\)
P/s: Em ko chắc đâu ạ. Mới lớp 6 thui :v
\(x=\frac{1}{3}\) có thể ghi tất cả phép tính ra và thay dấu = thành dấu - trên may tinh casio rồi nhấn shift tiếp theo nhấn calc rồi chọn số bất kì rồi nhấn bằng đợi một lát rồi nhấn asn rồi nhấn =
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
cái này nhân trên tử một lượng giống hệt mẫu là ra hằng đẳng thức e nhé
CÁi này easy mà .-.
\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)
\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)
\(\Rightarrow x-6=0\Rightarrow x=6\)
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)