\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

@Mysterious Person

28 tháng 9 2018

điều kiện xác định : \(\left\{{}\begin{matrix}x\ge0\\x^2-3x-18\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\le-3\\x\ge6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x\ge6\)

ta đưa phương trình về dạng hệ quả của nó :

\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)

\(\Leftrightarrow\sqrt{5x^2+4x}=\sqrt{x^2-3x-18}+5\sqrt{x}\)

\(\Leftrightarrow5x^2+4x=x^2+22x-18+10\sqrt{x^3-3x^2-18x}\)

\(\Leftrightarrow4x^2-18x+18=10\sqrt{x^3-3x^2-18x}\)

giải tiếp đi nha ...DƯƠNG PHAN KHÁNH DƯƠNG

15 tháng 7 2017

\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)

ĐK:\(x\ge 6\)

\(pt\Leftrightarrow\left(\sqrt{5x^2+4x}-21\right)-\left(\sqrt{x^2-3x-18}-6\right)=5\sqrt{x}-15\)

\(\Leftrightarrow\dfrac{5x^2+4x-441}{\sqrt{5x^2+4x}+21}-\dfrac{x^2-3x-18-36}{\sqrt{x^2-3x-18}+6}=\dfrac{25x-225}{5\sqrt{x}+15}\)

\(\Leftrightarrow\dfrac{\left(x-9\right)\left(5x+49\right)}{\sqrt{5x^2+4x}+21}-\dfrac{\left(x-9\right)\left(x+6\right)}{\sqrt{x^2-3x-18}+6}-\dfrac{25\left(x-9\right)}{5\sqrt{x}+15}=0\)

\(\Leftrightarrow\left(x-9\right)\left(\dfrac{5x+49}{\sqrt{5x^2+4x}+21}-\dfrac{x+6}{\sqrt{x^2-3x-18}+6}-\dfrac{x-9}{5\sqrt{x}+15}\right)=0\)

Dễ thấy: \(\dfrac{5x+49}{\sqrt{5x^2+4x}+21}-\dfrac{x+6}{\sqrt{x^2-3x-18}+6}-\dfrac{x-9}{5\sqrt{x}+15}>0\)

\(\Rightarrow x-9=0\Rightarrow x=9\)

29 tháng 4 2019

lẽ ra phải chứng minh nó lớn hơn không chứ?

18 tháng 8 2019

a)...ghi lại đề...

\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-2}^2=1^2\)

\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))

\(\Leftrightarrow x=3\)

\(\)

18 tháng 8 2019

\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Rightarrow x^2-3x+2=x-1\)

\(\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy..........

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

ĐKXĐ: \(\begin{cases}x^2+3x+2\ge0\\ x^2+4x+3\ge0\\ x^2+5x+4\ge0\end{cases}\Rightarrow\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\ \left(x+3\right)\left(x+1\right)\ge0\\ \left(x+4\right)\left(x+1\right)\ge0\end{cases}\)

=>\(\left[\begin{array}{l}x\ge-1\\ x\le-4\end{array}\right.\)

\(\sqrt{x^2+3x+2}+\sqrt{x^2+4x+3}=2\sqrt{x^2+5x+4}\)

=>\(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+3\right)}=2\cdot\sqrt{\left(x+1\right)\left(x+4\right)}\)

=>\(\sqrt{x+1}\left(\sqrt{x+2}+\sqrt{x+3}-2\sqrt{x+4}\right)=0\)

=>\(\sqrt{x+1}=0\)

=>x+1=0

=>x=-1(nhận)

21 tháng 8

ta có: x²+ 3x + 2 =(x+1)(x+2)

x² + 4x + 3 =(x +1)(x+3)

x^2 + 5x + 4 = (x+1)(x+4)

pt trình trên chuyển hết sang một vế ta đc:

(✓x+1)(√x+2 + √x+3 - 2√x+4 ) = 0

th1: x+1 = 0 ⇒ x= -1

th2: √x+2 + √x+3 = 2√x+4

⇔ (√x+2 + √x+3 )^2 = 4(x+4)

(cậu tự giải ra nốt đi chứ mình lười đánh tay lắm nha)

⇒ x∈ Ø

vậy x =1

ĐKXĐ: \(\begin{cases}x^2+3x+2\ge0\\ x^2+4x+3\ge0\\ x^2+5x+4\ge0\end{cases}\Rightarrow\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\ \left(x+3\right)\left(x+1\right)\ge0\\ \left(x+4\right)\left(x+1\right)\ge0\end{cases}\)

=>\(\left[\begin{array}{l}x\ge-1\\ x\le-4\end{array}\right.\)

\(\sqrt{x^2+3x+2}+\sqrt{x^2+4x+3}=2\sqrt{x^2+5x+4}\)

=>\(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+3\right)}=2\cdot\sqrt{\left(x+1\right)\left(x+4\right)}\)

=>\(\sqrt{x+1}\left(\sqrt{x+2}+\sqrt{x+3}-2\sqrt{x+4}\right)=0\)

=>\(\sqrt{x+1}=0\)

=>x+1=0

=>x=-1(nhận)