\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

@Mysterious Person

28 tháng 9 2018

điều kiện xác định : \(\left\{{}\begin{matrix}x\ge0\\x^2-3x-18\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\le-3\\x\ge6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x\ge6\)

ta đưa phương trình về dạng hệ quả của nó :

\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)

\(\Leftrightarrow\sqrt{5x^2+4x}=\sqrt{x^2-3x-18}+5\sqrt{x}\)

\(\Leftrightarrow5x^2+4x=x^2+22x-18+10\sqrt{x^3-3x^2-18x}\)

\(\Leftrightarrow4x^2-18x+18=10\sqrt{x^3-3x^2-18x}\)

giải tiếp đi nha ...DƯƠNG PHAN KHÁNH DƯƠNG

15 tháng 7 2017

\(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)

ĐK:\(x\ge 6\)

\(pt\Leftrightarrow\left(\sqrt{5x^2+4x}-21\right)-\left(\sqrt{x^2-3x-18}-6\right)=5\sqrt{x}-15\)

\(\Leftrightarrow\dfrac{5x^2+4x-441}{\sqrt{5x^2+4x}+21}-\dfrac{x^2-3x-18-36}{\sqrt{x^2-3x-18}+6}=\dfrac{25x-225}{5\sqrt{x}+15}\)

\(\Leftrightarrow\dfrac{\left(x-9\right)\left(5x+49\right)}{\sqrt{5x^2+4x}+21}-\dfrac{\left(x-9\right)\left(x+6\right)}{\sqrt{x^2-3x-18}+6}-\dfrac{25\left(x-9\right)}{5\sqrt{x}+15}=0\)

\(\Leftrightarrow\left(x-9\right)\left(\dfrac{5x+49}{\sqrt{5x^2+4x}+21}-\dfrac{x+6}{\sqrt{x^2-3x-18}+6}-\dfrac{x-9}{5\sqrt{x}+15}\right)=0\)

Dễ thấy: \(\dfrac{5x+49}{\sqrt{5x^2+4x}+21}-\dfrac{x+6}{\sqrt{x^2-3x-18}+6}-\dfrac{x-9}{5\sqrt{x}+15}>0\)

\(\Rightarrow x-9=0\Rightarrow x=9\)

29 tháng 4 2019

lẽ ra phải chứng minh nó lớn hơn không chứ?

18 tháng 8 2019

a)...ghi lại đề...

\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-2}^2=1^2\)

\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))

\(\Leftrightarrow x=3\)

\(\)

18 tháng 8 2019

\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Rightarrow x^2-3x+2=x-1\)

\(\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy..........

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

16 tháng 12 2017

a)x=6

b)x=6

d)x=0.2

10 tháng 11 2017

\(ĐK:x\ge3\)

\(\Leftrightarrow5x^2+4=x^2+22x-18+10\sqrt{x.x-6.x+3}\)

\(\Leftrightarrow4x^2-18x+18=10\sqrt{x+3.x^2-6x}=0\)

\(\Leftrightarrow4.x^2-6x+6.x+3-10\sqrt{x+3.x^2-6x}=0\)

\(\Leftrightarrow2\sqrt{x^2-6x}-3\sqrt{x+3}.\sqrt{x^2-6x}-\sqrt{x+3}=0\)

28 tháng 5 2019

ĐÁP SỐ là mấy  vậy