Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}-\dfrac{2\sqrt{7}}{3}-\left(2\sqrt{x^2-x+1}-\dfrac{2\sqrt{7}}{3}\right)=9x-3\)
\(\Leftrightarrow\dfrac{4x^2+5x+1-\dfrac{28}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{4\left(x^2-x+1\right)-\dfrac{28}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=9x-3\)
\(\Leftrightarrow\dfrac{\dfrac{36x^2+45x-19}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{36x^2-36x+8}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=3\left(3x-1\right)\)
\(\Leftrightarrow\dfrac{\dfrac{\left(3x-1\right)\left(12x+19\right)}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{4\left(3x-2\right)\left(3x-1\right)}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3\right)=0\)
Dễ thấy: \(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3< 0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
Ace Legona cái dễ thấy của bạn mình nghĩ lại là mấu chốt của bài này
Bạn tham khảo:
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 9 | Học trực tuyến
Bạn lưu ý:
\(a=\sqrt{4x^2+5x+1}\ge0\)
\(b=\sqrt{4x^2-4x+4}=\sqrt{\left(2x-1\right)^2+3}\ge\sqrt{3}>1\)
Do đó \(a+b>1\) hay \(a+b-1>0\)
ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge-\frac{1}{4}\end{matrix}\right.\)
\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}+9x-3=0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{4x^2+5x+1}\ge0\\b=\sqrt{4x^2-4x+4}>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=9x-3\)
Phương trình trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a;b>0\Rightarrow a+b+1>0\))
\(\Leftrightarrow a=b\Rightarrow\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)
\(\Leftrightarrow4x^2+5x+1=4x^2-4x+4\)
\(\Leftrightarrow9x=3\Rightarrow x=\frac{1}{3}\)
YRibi Nkok Ngokkudo shinichiNguyễn Thị Diễm QuỳnhDƯƠNG PHAN KHÁNH DƯƠNGNguyenkhongbietem!Y ThuKhôi BùiHISINOMA KINIMADOnguyễn ngọc dinhLê Anh DuyPhùng Tuệ MinhTrần Trung NguyênRồng Đom ĐómNguyễn Thành TrươngNguyễn Quỳnh ChiNguyễn Huy TúAkai HarumaAce LegonaNguyễn Thanh HằngVõ Đông Anh TuấnMysterious Personsoyeon_Tiểubàng giảiPhương AnTrần Việt Linh
ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge-\frac{1}{4}\end{matrix}\right.\)
\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}+9x-3=0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{4x^2+5x+1}\ge0\\b=\sqrt{4x^2-4x+4}>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=9x-3\)
Phương trình trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+a+b\right)=0\)
\(\Leftrightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b>0\end{matrix}\right.\Rightarrow1+a+b>0\))
\(\Rightarrow\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)
\(\Leftrightarrow9x=3\)
\(\Rightarrow x=\frac{1}{3}\)
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
Đặt \(\hept{\begin{cases}\sqrt{4x^2+x+1}=a\\\sqrt{x^2-x+1}=b\end{cases}}\) \(\left(a,b\ge00\right)\)
Khi đó có pt \(a-2b=a^2-4b^2\)
\(\Leftrightarrow-\left(a-2b\right)\left(a+2b-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b=\frac{1}{2}-\frac{a}{2}\\b=\frac{a}{2}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-x+1}=\frac{1}{2}-\frac{\sqrt{4x^2+x+1}}{2}\\\sqrt{x^2-x+1}=\frac{\sqrt{4x^2+x+1}}{2}\end{cases}}\)\(\Rightarrow x=\frac{1}{3}\)
bh ban co can loi giai nua ko vay?