Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(đk:2\le x\le4\) \(pt\Leftrightarrow\sqrt{x-2}+\sqrt{4-x}=x-2\sqrt{3x}+5\)
\(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le2\left(x-2+4-x\right)=4\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
\(x-2\sqrt{3x}+5=\sqrt{x}^2-2\sqrt{3x}+5=\sqrt{x}^2-2\sqrt{3x}+3+2=\left(\sqrt{x}-\sqrt{3}\right)^2+2\ge2\)
\(\Rightarrow\left\{{}\begin{matrix}VT\le2\\VP\ge2\end{matrix}\right.\) dấu"=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{4-x}=2\\\left(\sqrt{x}-\sqrt{3}\right)^2+2=2\end{matrix}\right.\)
\(\Leftrightarrow x=3\left(tm\right)\)
(ủa đề sai chỗ nào ta?)
\(ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+3=3\sqrt{x-1}+\sqrt{x-2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{x-2}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow ab+3=3a+b\\ \Leftrightarrow3a-3+b-ab=0\\ \Leftrightarrow3\left(a-1\right)-b\left(a-1\right)=0\\ \Leftrightarrow\left(3-b\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow x-1=1\Rightarrow x=2\left(tm\right)\\b=3\Rightarrow x-2=9\Rightarrow x=11\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{2;11\right\}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
Điều kiện xác định: \(\left\{{}\begin{matrix}5x^2+4x\ge0\\x^2-3x-18\ge0\\x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+4\right)\ge0\\\left(x-6\right)\left(x+3\right)\ge0\\x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge0\\x\le\dfrac{-4}{5}\end{matrix}\right.\\\left[{}\begin{matrix}x\ge6\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x\ge6\) (*)
Khi đó phương trình \(\Leftrightarrow\) \(\sqrt{5x^2+4x}=\sqrt{x^2-3x-18}+5\sqrt{x}\)
\(\Leftrightarrow5x^2+4x=x^2+22x-18+10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow4x^2-18x+18=10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow5\sqrt{x\left(x-6\right)\left(x+3\right)}=2x^2-9x+9\\ \Leftrightarrow5\sqrt{\left(x^2-6x\right)\left(x+3\right)}=2\left(x^2-6x\right)+3\left(x+3\right)\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2-6x}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\)
Khi đó pt \(\left(1\right)\) trở thành: \(2a^2+3b^2-5ab=0\\ \Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)
- TH1: \(a=b\Rightarrow x^2-6x=x+3\Leftrightarrow x^2-7x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{7+\sqrt{61}}{2}\left(tm\right)\\\dfrac{7-\sqrt{61}}{2}\left(ktm\right)\end{matrix}\right.\)
-TH2: \(2a=3b\Leftrightarrow4a^2=9b^2\\ \Leftrightarrow4\left(x^2-6x\right)=9\left(x+3\right)\\ \Leftrightarrow4x^2-33x-27=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=\dfrac{-3}{4}\left(ktm\right)\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=\dfrac{7+\sqrt{61}}{2};x=9\)
\(3x-2=\sqrt[]{x^2+15}-\sqrt[]{x^2+8}=\dfrac{7}{\sqrt[]{x^2+15}+\sqrt[]{x^2+8}}>0\)
\(\Rightarrow x>\dfrac{2}{3}\)
\(\sqrt[]{x^2+15}-4=3x-3+\sqrt[]{x^2+8}-3\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+15}+4}=3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+8}+3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{x+1}{\sqrt[]{x^2+15}+4}=3+\dfrac{x+1}{\sqrt[]{x^2+8}+3}\left(1\right)\end{matrix}\right.\)
Do \(x>\dfrac{2}{3}\Rightarrow x+1>0\Rightarrow\dfrac{x+1}{\sqrt[]{x^2+15}+4}< \dfrac{x+1}{\sqrt[]{x^2+8}+3}\)
\(\Rightarrow\) (1) vô nghiệm hay pt có nghiệm duy nhất \(x=1\)
đk : x >= 0
\(\Leftrightarrow x-2\sqrt{x}-2+\sqrt{3x+2}=0\)
\(\Leftrightarrow x-2-\left(2\sqrt{x}-2\sqrt{2}\right)+\sqrt{3x+2}-2\sqrt{2}=0\)
\(\Leftrightarrow x-2-\frac{4x-8}{2\sqrt{x}+2\sqrt{2}}+\frac{3x+2-8}{\sqrt{3x+2}+2\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[1-\frac{4}{2\sqrt{x}+2\sqrt{2}}+\frac{3}{\sqrt{3x+2}+2\sqrt{2}}\right]=0\Leftrightarrow x=2\)(tmđk)