Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
a/ ĐKXĐ: \(x\ge\frac{-5}{7}\)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\)(thoả mãn)
b/ ĐKXĐ:....
\(\Leftrightarrow2x^2-3=4x-3\Leftrightarrow\left[{}\begin{matrix}x=2\left(thoảman\right)\\x=0\left(loai\right)\end{matrix}\right.\)
c/ ĐKXĐ:...
\(\Leftrightarrow\frac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)(thoả mãn)
d/ giống câu c nhưng đkxđ khác và nó vô no
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
ĐKXĐ: .....
Đặt \(x^2-7x=t\)
Phương trình trở thành
\(t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)
\(\Leftrightarrow t+8=\left(12-t\right)^2\)
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-25t+136=0\)
\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)
tại t = 17 , ta có
\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)
\(\Leftrightarrow.......\)
Tại t = 8 ta có
\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
mik ko bt :)
a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)
\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)
\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)
\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)
\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)
Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)
\(\Leftrightarrow x^2-7x+8=16\)
\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)
\(\Leftrightarrow\sqrt[3]{7x-8}-3+5\sqrt{x-1}-10=x\sqrt{2x-1}-15\)
\(\Leftrightarrow\frac{7x-8-27}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-1-4}{\sqrt{x-1}-2}-\frac{x^2\left(2x-1\right)-225}{x\sqrt{2x-1}+15}=0\)
\(\Leftrightarrow\frac{7\left(x-5\right)}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-5}{\sqrt{x-1}-2}-\frac{\left(x-5\right)\left(2x^2+9x+45\right)}{x\sqrt{2x-1}+15}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{7}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+\frac{5}{\sqrt{x-1}-2}-\frac{2x^2+9x+45}{x\sqrt{2x-1}+15}\right)=0\)
Suy ra x=5
Bài này có 2 nghiệm là x = 1 và x = 5 nhưng không biết giải thế nào.