K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

ĐK:\(x\ge3\)

PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)

Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.

2 tháng 7 2015

\(\Leftrightarrow\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=\left(\sqrt[3]{5x}\right)^3\)

\(\Leftrightarrow x+1+x-1+3\sqrt[3]{x-1}.\sqrt[3]{x+1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)

\(\Rightarrow3\sqrt[3]{x^2-1}.\sqrt[3]{5x}=3x\) (chưa chắc tồn tại x nên khi thay \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\) phải dùng dấu suy ra)

\(\Leftrightarrow\sqrt[3]{5x^3-5x}=x\Leftrightarrow5x^3-5x=x^3\Leftrightarrow4x^3-5x=0\)

\(\Leftrightarrow x\left(4x^2-5\right)=0\)

\(\Leftrightarrow x=0\text{ hoặc }x=\frac{\sqrt{5}}{2}\text{ hoặc }x=-\frac{\sqrt{5}}{2}\)

Thử lại thấy các số trên đều thỏa.

Vậy tập nghiệm của phương trình là \(S=\left\{0;\frac{\sqrt{5}}{2};-\frac{\sqrt{5}}{2}\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/1-23sqrt3x-23sqrt6-5x-802-sqrt3x1-sqrt6-x3x2-14x-803-sqrtx21253xsqrtx25.1468578539979

16 tháng 3 2020

gợi ý nhé

nhận thấy 2x2+11x+19=2x2+5x+7+6(x+2)

đặt ẩn phụ: căn(2x2+5x+7) = a và 3(x+2)=b

=) pt căn(a2+2b)+a=b (=) b(b-2a-2)=0 rồi giải từng trường hợp

Phương trình trên có nghiệm bằng 1

Ta có thể phần tích thành ( x - 1 ) f(x)  bằng 0

\(\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)

Bạn trục căn thức là ra ( x- 1)

16 tháng 6 2017

đặt \(t=\sqrt{5x^2+6x+5}\). khi đó pt tương đương:

\(t=\frac{64x^3+4x}{t^2+1}\)hay \(t^3+t=64x^3+4x\Leftrightarrow\left(64x^3-t^3\right)+\left(4x-t\right)=0\)

\(\left(4x-t\right)\left(16t^2+4xt+2\right)\)

đến đây tự giải tiếp bạn nhé.
 

15 tháng 5 2017

đề sai r,,,,,,cái kia phải là x^2-x+1 chứ

nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok

27 tháng 5 2017

yes..thanks