\(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=\sqrt[3]{3x-2}\)

GIÚP MÌNH...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

dkxd  \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)

          \(x-1\ge0\Leftrightarrow x\ge1\)

lập phương 2 vế

\(2x-1+x-1+3\left(\sqrt[3]{\left(2x-1\right)^2\left(x-1\right)}+\sqrt[3]{\left(X-1\right)^2\left(2x-1\right)}\right)=3x-2.\)

đặt căn bậc 3(2x-1)=m ,  căn bậc 3(X-1)=t " và rút gọn ta được

\(3t^2m+3m^2t=0\)

\(3tm\left(t+m\right)=0\)

\(\hept{\begin{cases}tm=0\\t+m=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{\left(2x-1\right)\left(x-1\right)}=0\\\sqrt[3]{\left(2x-1\right)}+\sqrt[3]{\left(X-1\right)}=0\end{cases}}}\)

lập phương 2 vế ta được

\(\left(2x-1\right)\left(x-1\right)=0\)

\(\hept{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)

\(\sqrt[3]{\left(2x-1\right)}+\sqrt[3]{x-1}=0\Leftrightarrow\sqrt[3]{\left(2x-1\right)}=-\sqrt[3]{\left(x-1\right)}\)

lập phương 2 vế ta được

\(2x-1=-x+1\Leftrightarrow x=0\)

x=0 loại vì ko thỏa mãn điều kiện xác định 

suy ra pt có 2 nghiệm  \(x_1=\frac{1}{2}...x_2=1\)

23 tháng 5 2018

sửa lại dòng \(2x-1=-x+1\Leftrightarrow x=-2\) loại vì ko thỏa mãn dkxd

24 tháng 9 2016

1, x=5 bình phương các vế lên rồi giải 

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||

4 tháng 8 2019

a)   x=-1

x=8

4 tháng 8 2019

a)  x=8 hoặc x=-1

Đặt ẩn phụ

g)  x=1 hoặc x=2 hoặc x=-3

Phân tích thành nhân tử rồi xét giá trị

4 tháng 8 2019

e) 

\(\sqrt{2x+1}-\sqrt{3x}=x-1\) 1

<=>\(2x+1-3x=\left(x+1\right)^2\)

<=>\(2x+1-3x=x^2-2x+1\)

<=> \(2x-3x-x^2+2x=1-1\)

<=> \(x-x^2=0\)

<=> \(x\left(1-x\right)=0\)

<=> \(x=0\)Hoặc \(1-x=0\)

trg hợp 1 : \(x=0\)

th2: \(1-x=0\)<=>\(x=1\)

4 tháng 8 2019

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)

Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)

\(a+b+ab=3\)

và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)

Cộng hai vế xuống ta có :

\(a^2+b^2=x+1+8-x=9\)

Theo phương trình ta lại có :

\(a+b+ab=3\)

Ta có hệ phương trình :

\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)

Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi 

28 tháng 7 2019

Mk gợi ý nha phần còn lại bạn làm nốt nhá

\(a,\sqrt{2x-1}-\sqrt{3}=\sqrt{x^2+2x-5}-\sqrt{3}\)

\(\Leftrightarrow\frac{2x-4}{\sqrt{2x-1}+\sqrt{3}}=\frac{\left(x-2\right)\left(x+4\right)}{\sqrt{x^2+2x-5}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{3}}-\frac{x+4}{\sqrt{x^2+2x-5}+\sqrt{3}}\right)=0\)

\(b,\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x^3-3x+1}-\sqrt{x^3-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3-3x+1=x^3-x\end{cases}}\)

Câu f sai đề thì phải 

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(2x-1\right)}=x\)

\(\sqrt{x}\left(\sqrt{x-1}+\sqrt{2x-1}-\sqrt{x}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x-1}+\frac{2x-2}{\sqrt{2x-1}+1}+\frac{x-1}{1+\sqrt{x}}=0\end{cases}}\)

Câu g bình lên sau đó chuyển vế và bình lên 1 lần nữa

\(h,pt\Leftrightarrow\sqrt{2x-3}+6-\sqrt{4x+3}-9=0\)

Liên hợp nha bạn

Có mấy câu mk ko bít làm mong bạn thông cảm