\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2020

đk: \(\hept{\begin{cases}x\ne0\\x^2\ge\sqrt{\frac{5}{6}}\end{cases}}\)

Ta có: \(x^2\ge\sqrt{\frac{5}{6}}\Rightarrow\hept{\begin{cases}\frac{5}{x^2}>0\\6x^2-1>0\end{cases}}\)

Áp dụng BĐT Cauchy ta có: \(\sqrt{30-\frac{5}{x^2}}=\sqrt{\frac{5}{x^2}\left(6x^2-1\right)}\le\frac{\frac{5}{x^2}+6x^2-1}{2}\) (1)

Mà \(\sqrt{6x^2-\frac{5}{x^2}}=\sqrt{\left(6x^2-\frac{5}{x^2}\right)\cdot1}\le\frac{6x^2-\frac{5}{x^2}+1}{2}\) (2)

Cộng vế (1) và (2) lại ta được:

\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}\le\frac{12x^2}{2}=6x^2\) 

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{5}{x^2}=6x^2-1\\6x^2-\frac{5}{x^2}=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy \(x\in\left\{-1;1\right\}\)

25 tháng 8 2019

ko có x để B= 1/2

12 tháng 10 2021

a, Với x >= 0 ; x khác 4 

\(=\frac{x-3\sqrt{x}+2-\left(x+4\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-3\sqrt{x}-3-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-7\sqrt{x}-6-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)

b, \(Q+1>0\Leftrightarrow\frac{-\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}-2}>0\Leftrightarrow\frac{-8}{\sqrt{x}-2}>0\)

\(\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\Rightarrow0\le x< 4\)

c, \(\frac{-\left(\sqrt{x}+6\right)}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2+8\right)}{\sqrt{x}-2}=-1-\frac{8}{\sqrt{x}-2}\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\sqrt{x}-2\)-11-22-44-88
x19016loại36loại100
13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

28 tháng 9 2015

1)ĐK : ........

đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\)  ta có \(a^2-b^2=x+5-x-2=3\)

pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)

=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)

=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)

đến đây bạn tự giải nha 

28 tháng 9 2015

2) xét 

VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\) 

Dấu = xảy ra khi x =3

\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\) 

Dấu bằng xảy ra tại x =  3 

=> VT = VP = 4 tại x  = 3 

Vậy x = 3 là n* duy nhất