Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: ....>=0 (đúng với mọi x thuộc R)
Đặt \(\sqrt{2x^2+3x+5}=a;\text{ }\sqrt{2x^2-3x+5}=b\)
\(a^2-b^2=2x^2+3x+5-\left(2x^2-3x+5\right)=6x\)
phương trình đã cho thành \(a+b=\frac{1}{2}\left(a^2-b^2\right)\Leftrightarrow\left(a+b\right)\left(a-b\right)=2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-2\right)=0\)
\(\Leftrightarrow a-b=2\text{ (do }a,b>0\text{)}\)
Mà \(a+b=3x\)
\(\Rightarrow a+b+a-b=2+3x\Leftrightarrow2a=2+3x\)
\(\Rightarrow2\sqrt{2x^2+3x+5}=2+3x\)
\(\Leftrightarrow4\left(2x^2+3x+5\right)=\left(2+3x\right)^2\text{ và }2+3x\ge0\)
\(\Leftrightarrow x^2=16\text{ và }x\ge-\frac{2}{3}\)
\(\Leftrightarrow x=4\)
Kết luận: x = 4.
Gợi ý:
ĐK: \(x\ge-5\)
pt <=> \(2\sqrt{2x^2+5x+12}+2\sqrt{2x^2+3x+2}=2x+10\)
<=> \(2x^2+5x+12+2\sqrt{2x^2+5x+12}+1-2x^2-3x-2+2\sqrt{2x^2+3x+2}-1=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+1\right)^2-\left(\sqrt{2x^2+3x+2}-1\right)^2=0\)
<=> \(\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}+2\right)=0\)
đến đây bn giải từng trường hợp ra nhé
Uầy , cách CTV Khánh làm đồ sộ vậy ? Bài này nhân liên hợp là ra mà . Và cái điều kiện x > -5 là điều kiện bình phương chớ ko phải ĐKXĐ đâu -.-
\(ĐKXĐ:x\in R\)
Vì VT > 0 nên VP > 0
<=> x + 5 > 0
<=> x > -5
Ta có: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
\(\Leftrightarrow\frac{\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x^2+5x+12-2x^2-3x-2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2x+10}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)
\(\Leftrightarrow\frac{2\left(x+5\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-1\right)=0\)
|_____________________A______________________|
Vì \(A>0\forall x\ge5\)
Nên x + 5 = 0
<=> x = -5 (Tm ĐKXĐ)
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\left(1\right)\)
ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu "=" xảy ra <=> \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Ta lại có VP=3x2-12x+14=3(x-2)2+2 >=2
Dấu "=" xảy ra khi x=2
Do đó VT=VP <=> x=2 (ttmđk)
Vậy S={2}
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
\(\Leftrightarrow\left(2x-5\right)-2\sqrt{2x-5}+1+\left(3x-5\right)-4\sqrt{3x-5}+4=0\)
\(\Leftrightarrow\left(\sqrt{2x-5}-1\right)^2+\left(\sqrt{3x-5}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}-1=0\\\sqrt{3x-5}-2=0\end{cases}}\)
Tới đây chắc giải đc rồi
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3x\)
đặt \(\hept{\begin{cases}\sqrt{2x^2+3x+5}=a\\\sqrt{2x-3x+5}=b\end{cases}}\left(a;b\ge0\right)\)
pt trở thành \(a+b=\frac{a^2-b^2}{2}\)
\(\Leftrightarrow a^2-b^2-2a-2b=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^2=0\)
\(\Leftrightarrow\left(a-1-b-1\right)\left(a-1+b+1\right)=0\)
\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)
th1 : a + b = 0 hay \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=0\)
vì \(\sqrt{2x^2+3x+5}\ge0\) và \(\sqrt{2x^2-3x+5}\ge0\)
\(\Rightarrow\hept{\begin{cases}2x^2+3x+5=0\\2x^2-3x+5=0\end{cases}}\)
\(\Rightarrow4x^2+10=0\)
\(\Rightarrow4x^2=-10\left(loai\right)\)
th2 : a - b - 2 = 0 hay \(\sqrt{2x^2+3x+5}-\sqrt{2x^2-3x+5}-2=0\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=2+\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow2x^2+3x+5=4+4\sqrt{2x^2-3x+5}+2x^2-3x+5\)
\(\Leftrightarrow4\sqrt{2x^2-3x+5}=6x-4\)
\(\Leftrightarrow2\sqrt{2x^2-3x+5}=3x-2\) (x >=2/3)
\(\Leftrightarrow4\left(2x^2-3x+5\right)=9x^2-12x+4\)
\(\Leftrightarrow8x^2-12x+20=9x^2-12x+4\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\x=-4\left(loai\right)\end{cases}}\)
vay x = 4
Căm ơn bạn nhiều nhé =)