Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bước làm:
Thử nghiệm: x = 2 là nghiệm
------> Thử xem các cách làm tất nhiên là không thể bình phương -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ
+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3
-----------------------------------------------------------------------------------------------------------------------
Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)
<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)
<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi \(1\le x\le3\))
<=> x - 2 = 0
<=> x = 2 thỏa mãn đk
ĐKXĐ : ....
PT \(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)
\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}+x\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x>0\left(loai\right)\end{cases}}\)
Điều kiện 1 =<x=<3
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)
\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow x\left(x-2\right)^2+\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}>0\right)\)
<=> x=2(tmđk)
a/ ĐKXĐ: ....
\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)
\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: ....
\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)
\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)