\(\sin^2x+\sin^22x=1\)

giải hộ mình với :)))

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

pt<=>sin2x=1-sin22x

<=>sin2x=cos22x

<=>sin2x=(1-2sin2x)2

<=>sin2x=1-4sin2x+4sin4x

<=>4sin4x-5sin2x+1=0

py trùng phương giải như pt bậc hai

<=>\(\left[{}\begin{matrix}sin^2x=1\\sin^2x=\dfrac{1}{4}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}cos^2x=0\\sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)

tới đây bạn tự giải nha(5 nghiệm)

26 tháng 9 2017

thanks bạn, mình còn 1 cách này:

pt <=>\(\sin^22x=\cos^2x\)

<=>\(\dfrac{1-\cos4x}{2}=\dfrac{1+\cos2x}{2}\)

<=>\(\cos4x+\cos2x=0\)

<=>\(\cos4x=-\cos2x\)

<=>\(\cos4x=\cos\left(\pi-2x\right)\)

<=>\(\left[{}\begin{matrix}4x=\pi-2x+k2\pi\\4x=2x-\pi+k2\pi\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\dfrac{\pi}{3}\\x=-\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

12 tháng 9 2016

a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)

\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)

\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)

\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)

\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)

\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)

\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)

\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)

12 tháng 9 2016

b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)

\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)

\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)

\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)

\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)

NV
17 tháng 9 2020

ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\frac{4sin^2x.cos^2x-4sin^2x}{4sin^2x.cos^2x+4sin^2x}+1=2tan^2x\)

\(\Leftrightarrow\frac{4sin^2x\left(cos^2x-1\right)}{4sin^2x\left(cos^2x+1\right)}+1=\frac{2sin^2x}{cos^2x}\)

\(\Leftrightarrow\frac{cos^2x}{cos^2x+1}=\frac{1-cos^2x}{cos^2x}\)

Đặt \(cos^2x=t\Rightarrow0< t< 1\)

\(\Rightarrow\frac{t}{t+1}=\frac{1-t}{t}\Leftrightarrow t^2=1-t^2\Leftrightarrow t^2=\frac{1}{2}\)

\(\Leftrightarrow t=\frac{\sqrt{2}}{2}\Leftrightarrow cos^2x=\frac{\sqrt{2}}{2}\)

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

NV
23 tháng 7 2020

\(\Leftrightarrow\frac{1-cos2x}{2}+\frac{1-cos6x}{2}-\left(1+cos4x\right)=0\)

\(\Leftrightarrow cos2x+cos6x+2cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+2cos4x=0\)

\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\) \(\Leftrightarrow...\)