\(^{x^4+9x^2=0}\)

 
">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

\(x^4+9x^2=0\)

\(\Leftrightarrow x^2\left(x^2+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

Vậy ........

12 tháng 2 2020

Ta có \(x^4\ge0\) và \(9x^2\ge0\) 

=> \(x^4+9x^4\ge0\)

=> dấu '=' xảy ra khi x=0

Vậy x=0

11 tháng 8 2019

a) \(3x-7\sqrt{x}+4=0\)

\(\Leftrightarrow-7\sqrt{x}=0-3x-4\)

Bình phương hai vế, ta có:

\(\Leftrightarrow49x=9x^2+24x+16\)

\(\Leftrightarrow49x-9x^2-24x-16=0\)

\(\Leftrightarrow25x-9x^2-16=0\)

\(\Leftrightarrow9x^2-25x+16=0\)

\(\Leftrightarrow9x^2-9x-16x+16=0\)

\(\Leftrightarrow9x\left(x-1\right)-16\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(9x-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\9x-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}\)

vậy nghiệm phương trình là: \(\left\{1;\frac{16}{9}\right\}\)

b) bình phương 2 vế và làm tương tự, mình hơi lười

1 tháng 8 2016

điều kiện: x thuộc(\(-\infty;-3\))\(\cup\left(-\frac{7}{5}:+\infty\right)\)

PT<=> 5x+7=16x+48

<=>x=-41/14 (k thỏa)

\=> PTVN

2 tháng 8 2016

đkxđ : \(\begin{cases}5x+7\ge0\\x+3>0\end{cases}\) \(\Leftrightarrow\)  \(\begin{cases}x\ge\frac{7}{5}\\x>-3\end{cases}\)

pt \(\Leftrightarrow\)  \(\frac{5x+7}{x+3}\) = 16

    \(\Leftrightarrow\)  5x+7= 16x+48

    \(\Leftrightarrow\)  x= \(\frac{-41}{11}\)  (L)

Vậy pt vô nghiệm

17 tháng 8 2019

ĐK: \(x>2;y>1\)

pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

\(VT\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=24+4=28=VP\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=11\\y=5\end{cases}}\) ( nhận ) 

20 tháng 3 2021

ĐKXĐ : x ≥ 0

<=> \(x-5\sqrt{x}+2\sqrt{x}-10=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)=0\)

<=> \(\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)=0\)(1)

Vì \(\sqrt{x}+2\ge2>0\forall x\ge0\)

nên (1) <=> \(\sqrt{x}-5=0\)<=> \(\sqrt{x}=5\)<=> x = 25 (tm)

Vậy pt có nghiệm x = 25

18 tháng 5 2021

ĐK: x\ge0x0

x-3\sqrt{x}-10=0x3x10=0

Đặt \sqrt{x}=t\left(t\ge0\right)x=t(t0). Khi đó phương trình trở thành t^2-3t-10=0t23t10=0

\Leftrightarrow\left(t^2-5t\right)+\left(2t-10\right)=0\Leftrightarrow\left(t+2\right)\left(t-5\right)=0(t25t)+(2t10)=0(t+2)(t5)=0

\Leftrightarrow\left[{}\begin{matrix}t+2=0\\t-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-2\left(l\right)\\t=5\left(n\right)\end{matrix}\right.[t+2=0t5=0[t=2(l)t=5(n)

Với t = 5 ta có \sqrt{x}=5\Leftrightarrow x=25\left(tmđk\right)x=5x=25(tmđk)

Vậy phương trình có nghiệm x = 25.

30 tháng 6 2016

B . x = 1 hoặc x = -2

30 tháng 6 2016

bạn giải pt trên là dduocj: \(x^2+x-2=0\)<=> x=-1 hoặc x=2

=> A đúng nha bạn

13 tháng 9 2020

Thiếu 1 phương trình :

\(4x^2-4\left(2n+1\right)x+4n^2+96mnp+1=0\)

12 tháng 4 2019

Xét phương trình đầu: \(x^2-\left(3y+2\right)x+2y^2+4y=0\)(1)

Xem x là ẩn và y là tham số:

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

Phương trình (1) có 2 nghiệm 

\(x_1=\frac{\left(3y+2\right)-\left(y-2\right)}{2}=y+2\)

\(x_2=\frac{3y+2+\left(y-2\right)}{2}=2y\)

+) Với x =y+2 <=> y=x-2Thế vào phương trình (2) Ta có:

\(\left(x^2-5\right)^2=9\Leftrightarrow\orbr{\begin{cases}x^2-5=-3\\x^2-5=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=2\\x^2=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm2\sqrt{2}\end{cases}}\)

thế vào tìm y

+) Với x=2y thế vào ta có: \(\left(x^2-5\right)^2=x+5\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^4-9x^2+\frac{81}{4}\right)-\left(x^2+x+\frac{1}{4}\right)=0\Leftrightarrow\left(x^2-\frac{9}{4}\right)^2-\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

Em làm tiếp nhé