Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ne\frac{-1}{3}\)
\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)
\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2
Vậy...........
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
Vì x2 + 12 > 0 với mọi x
=> (4x-1)(x2+12)(-x+4) > 0
Khi ( (4x-1)(-x+4) > 0
TH1 : \(\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)
<=> \(\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}}\)
=> 1/4 < x < 4
TH2 \(\hept{\begin{cases}4x-1< 0\\-x+4< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x< \frac{1}{4}\\x>4\end{cases}}\)
Vì không tồn tai x lớn hơn 4 và nhỏ hơn 1/4
=> TH2 không tồn tại x
=> (4x-1)(x2+12)(-x+4) > 0
khi 1/4 < x < 4
Vì x^2 + 12 > 0 với mọi x
Ta có bất phương trình tương đương: (4x-1)(-x+4) > 0
=> 4x-1 và -x+4 phải cùng dấu.
Trường hợp 1: 4x-1 > 0 và -x + 4 > 0 <=> x>1/4 và x<4 <=> 1/4 < x < 4.
Trường hợp 2: 4x-1 < 0 và -x + 4 < 0 <=> x<1/4 và x>4 (vô lý)
Vậy S={x | 1/4 < x < 4}
a, ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ne2\\x\ne3\end{cases}x\ne4}\)
ta có \(đề\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{4}{x-4}=x-2+\frac{2}{x-2}+x-3+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{2}{x-2}=\frac{3}{x-3}-\frac{4}{x-4}\)
\(\Leftrightarrow\frac{x-2-2x+2}{\left(x-1\right)\left(x-2\right)}=\frac{3x-12-4x+12}{\left(x-3\right)\left(x-4\right)}\)
\(\Leftrightarrow\frac{-x}{\left(x-1\right)\left(x-2\right)}=\frac{-x}{\left(x-3\right)\left(x-4\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=\left(x-3\right)\left(x-4\right)\)(đến đây bạn nhân ra tự giải nhé )
p/s :mình nghĩ bạn viết sai đề đấu + ở phép đầu tiên ko phải - bạn xem lại nhé
b,\(\Leftrightarrow[2\left(x-3\right)]^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-6+x-1\right)\left(2x-6-x+1\right)=0\)
\(\Leftrightarrow\left(3x-7\right)\left(x-5\right)=0\)(bạn tự giải)
c,\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\left(do\left(x^2+1>0\right)\right)\)
\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)
- \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
- \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
vậy x=2/3 hoặc x=17/6
ĐKXĐ: x\(\ne-2\)
Ta co
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
=> \(x^2-2.x.\frac{2x}{x+2}+\frac{4x^2}{\left(x+2\right)^2}\)\(+2.x.\frac{2x}{x+2}\)=12
=> \(\left(x-\frac{2x}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
=>\(\frac{x^4}{\left(x+2\right)^2}+\frac{4x^2}{x+2}-12=0\)(1)
Đặt \(\frac{x^2}{x+2}=y\)
(1)<=>y2+4y-12=0
<=>(y+6)(y-2)=0
Đến đây dễ rồi bạn tự làm tiếp nhé